Traditional track dynamic geometric state(TDGS)simulation incurs substantial computational burdens,posing challenges for developing reliability assessment approach that accounts for TDGS.To overcome these,firstly,a si...Traditional track dynamic geometric state(TDGS)simulation incurs substantial computational burdens,posing challenges for developing reliability assessment approach that accounts for TDGS.To overcome these,firstly,a simulation-based TDGS model is established,and a surrogate-based model,grid search algorithm-particle swarm optimization-genetic algorithm-multi-output least squares support vector regression,is established.Among them,hyperparameter optimization algorithm’s effectiveness is confirmed through test functions.Subsequently,an adaptive surrogate-based probability density evolution method(PDEM)considering random track geometry irregularity(TGI)is developed.Finally,taking curved train-steel spring floating slab track-U beam as case study,the surrogate-based model trained on simulation datasets not only shows accuracy in both time and frequency domains,but also surpasses existing models.Additionally,the adaptive surrogate-based PDEM shows high accuracy and efficiency,outperforming Monte Carlo simulation and simulation-based PDEM.The reliability assessment shows that the TDGS part peak management indexes,left/right vertical dynamic irregularity,right alignment dynamic irregularity,and track twist,have reliability values of 0.9648,0.9918,0.9978,and 0.9901,respectively.The TDGS mean management index,i.e.,track quality index,has reliability value of 0.9950.These findings show that the proposed framework can accurately and efficiently assess the reliability of curved low-stiffness track-viaducts,providing a theoretical basis for the TGI maintenance.展开更多
The utilization of biomimicry of bacterial foraging strategy was considered to develop an adaptive control strategy for mobile robot, and a bacterial foraging approach was proposed for robot path planning. In the prop...The utilization of biomimicry of bacterial foraging strategy was considered to develop an adaptive control strategy for mobile robot, and a bacterial foraging approach was proposed for robot path planning. In the proposed model, robot that mimics the behavior of bacteria is able to determine an optimal collision-free path between a start and a target point in the environment surrounded by obstacles. In the simulation, two test scenarios of static environment with different number obstacles were adopted to evaluate the performance of the proposed method. Simulation results show that the robot which reflects the bacterial foraging behavior can adapt to complex environments in the planned trajectories with both satisfactory accuracy and stability.展开更多
A distributed local adaptive transmit power assignment (LA-TPA) strategy was proposed to construct a topology with better performance according to the environment and application scenario and prolong the network lifet...A distributed local adaptive transmit power assignment (LA-TPA) strategy was proposed to construct a topology with better performance according to the environment and application scenario and prolong the network lifetime.It takes the path loss exponent and the energy control coefficient into consideration with the aim to accentuate the minimum covering district of each node more accurately and precisely according to various network application scenarios.Besides,a self-healing scheme that enhances the robustness of the network was provided.It makes the topology tolerate more dead nodes than existing algorithms.Simulation was done under OMNeT++ platform and the results show that the LA-TPA strategy is more effective in constructing a well-performance network topology based on various application scenarios and can prolong the network lifetime significantly.展开更多
For the purpose of improving efficiency and realizing start–stop function, an electric oil pump(EOP) is integrated into an 8-speed automatic transmission(AT). A mathematical model is built to calculate the transmissi...For the purpose of improving efficiency and realizing start–stop function, an electric oil pump(EOP) is integrated into an 8-speed automatic transmission(AT). A mathematical model is built to calculate the transmission power loss and the hydraulic system leakage. Based on this model, a flow-based control strategy is developed for EOP to satisfy the system flow requirement. This control strategy is verified through the forward driving simulation. The results indicate that there is a best combination for the size of mechanical oil pump(MOP) and EOP in terms of minimum energy consumption. In order to get a quick and smooth starting process, control strategies of the EOP and the on-coming clutch are proposed. The test environment on a prototype vehicle is built to verify the feasibility of the integrated EOP and its control strategies. The results show that the selected EOP can satisfy the flow requirement and a quick and smooth starting performance is achieved in the start–stop function. This research has a high value for the forward design of EOP in automatic transmissions with respect to efficiency improvement and start–stop function.展开更多
To address the issue of resource co-allocation with constraints to budget and deadline in grid environments, a novel co-allocation model based on virtual resource agent was proposed. The model optimized resources depl...To address the issue of resource co-allocation with constraints to budget and deadline in grid environments, a novel co-allocation model based on virtual resource agent was proposed. The model optimized resources deployment and price scheme through a three-side co-allocation mechanism, and applied queuing system to model the work of grid resources for providing quantitative deadline guarantees for grid applications. The validity and solutions of the model were presented theoretically. Extensive simulations were conducted to examine the effectiveness and the performance of the model by comparing with other co-allocation policies in terms of deadline violation rate, resource benefit and resource utilization. Experimental results show that compared with the three typical co-allocation policies, the proposed model can reduce the deadline violation rate to about 3.5% for the grid applications with constraints to budget and deadline. Also, the system benefits can be increased by about 30% compared with the those widely-used co-allocation policies.展开更多
The theoretical study of a semi-active predictive control(SAPC) system with magnetorheological(MR) dampers to reduce the responses of seismically excited structures was presented.The SAPC scheme is based on a predicti...The theoretical study of a semi-active predictive control(SAPC) system with magnetorheological(MR) dampers to reduce the responses of seismically excited structures was presented.The SAPC scheme is based on a prediction model of the system response to obtain the control actions by minimizing an object function,which has a function of self-compensation for time delay occurring in real application.A double-ended shear mode combined with a valve mode MR damper,named MRF-04K damper,with the maximum force of 20 kN was designed and manufactured,and parameters of the Bouc-Wen hysteresis model were determined to portray the behavior of this damper.As an example,a 5-story building frame equipped with 2 MRF-04K dampers was presented to demonstrate the performance of the proposed SAPC scheme for addressing time delay and reducing the structural responses under different earthquakes.Comparison with the uncontrolled structure,the passive-off and passive-on cases indicates that both the peak and the norm values of structural responses are all clearly reduced,and the SAPC scheme has a better performance than the two passive cases.展开更多
In order to apply overbooking idea in Chinese railway freight industry to improve revenue, a Markov decision process(dynamic programming) model for railway freight reservation was formulated and the overbooking limit ...In order to apply overbooking idea in Chinese railway freight industry to improve revenue, a Markov decision process(dynamic programming) model for railway freight reservation was formulated and the overbooking limit level was proposed as a control policy. However, computing the dynamic programming treatment needs six nested loops and this will be burdensome for real-world problems. To break through the calculation limit, the properties of value function were analyzed and the overbooking protection level was proposed to reduce the calculating quantity. The simulation experiments show that the overbooking protection level for the lower-fare class is higher than that for the higher-fare class, so the overbooking strategy is nested by fare class. Besides, by analyzing the influence on the overbooking strategy of freight arrival probability and cancellation probability, the proposed approach is efficient and also has a good application prospect in reality. Also, compared with the existing reservation(FCFS), the overbooking strategy performs better in the fields of vacancy reduction and revenue improvement.展开更多
In order to effectively solve combinatorial optimization problems,a membrane-inspired quantum bee colony optimization(MQBCO)is proposed for scientific computing and engineering applications.The proposed MQBCO algorith...In order to effectively solve combinatorial optimization problems,a membrane-inspired quantum bee colony optimization(MQBCO)is proposed for scientific computing and engineering applications.The proposed MQBCO algorithm applies the membrane computing theory to quantum bee colony optimization(QBCO),which is an effective discrete optimization algorithm.The global convergence performance of MQBCO is proved by Markov theory,and the validity of MQBCO is verified by testing the classical benchmark functions.Then the proposed MQBCO algorithm is used to solve decision engine problems of cognitive radio system.By hybridizing the QBCO and membrane computing theory,the quantum state and observation state of the quantum bees can be well evolved within the membrane structure.Simulation results for cognitive radio system show that the proposed decision engine method is superior to the traditional intelligent decision engine algorithms in terms of convergence,precision and stability.Simulation experiments under different communication scenarios illustrate that the balance between three objective functions and the adapted parameter configuration is consistent with the weights of three normalized objective functions.展开更多
A new multi-species particle swarm optimization with a two-level hierarchical topology and the orthogonal learning strategy(OMSPSO) is proposed, which enhances the global search ability of particles and increases thei...A new multi-species particle swarm optimization with a two-level hierarchical topology and the orthogonal learning strategy(OMSPSO) is proposed, which enhances the global search ability of particles and increases their convergence rates. The numerical results on 10 benchmark functions demonstrated the effectiveness of our proposed algorithm. Then, the proposed algorithm is presented to design a butterfly-shaped microstrip patch antenna. Combined with the HFSS solver, a butterfly-shaped patch antenna with a bandwidth of about 40.1% is designed by using the proposed OMSPSO. The return loss of the butterfly-shaped antenna is greater than 10 d B between 4.15 and 6.36 GHz. The antenna can serve simultaneously for the high-speed wireless computer networks(5.15–5.35 GHz) and the RFID systems(5.8 GHz).展开更多
基金Project(52072412)supported by the National Natural Science Foundation of China。
文摘Traditional track dynamic geometric state(TDGS)simulation incurs substantial computational burdens,posing challenges for developing reliability assessment approach that accounts for TDGS.To overcome these,firstly,a simulation-based TDGS model is established,and a surrogate-based model,grid search algorithm-particle swarm optimization-genetic algorithm-multi-output least squares support vector regression,is established.Among them,hyperparameter optimization algorithm’s effectiveness is confirmed through test functions.Subsequently,an adaptive surrogate-based probability density evolution method(PDEM)considering random track geometry irregularity(TGI)is developed.Finally,taking curved train-steel spring floating slab track-U beam as case study,the surrogate-based model trained on simulation datasets not only shows accuracy in both time and frequency domains,but also surpasses existing models.Additionally,the adaptive surrogate-based PDEM shows high accuracy and efficiency,outperforming Monte Carlo simulation and simulation-based PDEM.The reliability assessment shows that the TDGS part peak management indexes,left/right vertical dynamic irregularity,right alignment dynamic irregularity,and track twist,have reliability values of 0.9648,0.9918,0.9978,and 0.9901,respectively.The TDGS mean management index,i.e.,track quality index,has reliability value of 0.9950.These findings show that the proposed framework can accurately and efficiently assess the reliability of curved low-stiffness track-viaducts,providing a theoretical basis for the TGI maintenance.
基金Project(61173032)supported by the National Natural Science Foundation of ChinaProject(20090406)supported by the Tianjin Scientific and Technological Development Fund of Higher Education of China
文摘The utilization of biomimicry of bacterial foraging strategy was considered to develop an adaptive control strategy for mobile robot, and a bacterial foraging approach was proposed for robot path planning. In the proposed model, robot that mimics the behavior of bacteria is able to determine an optimal collision-free path between a start and a target point in the environment surrounded by obstacles. In the simulation, two test scenarios of static environment with different number obstacles were adopted to evaluate the performance of the proposed method. Simulation results show that the robot which reflects the bacterial foraging behavior can adapt to complex environments in the planned trajectories with both satisfactory accuracy and stability.
基金Projects(61101104,61100213) supported by the National Natural Science Foundation of ChinaProject(NY211050) supported by Fund of Nanjing University of Posts and Telecommunications,China
文摘A distributed local adaptive transmit power assignment (LA-TPA) strategy was proposed to construct a topology with better performance according to the environment and application scenario and prolong the network lifetime.It takes the path loss exponent and the energy control coefficient into consideration with the aim to accentuate the minimum covering district of each node more accurately and precisely according to various network application scenarios.Besides,a self-healing scheme that enhances the robustness of the network was provided.It makes the topology tolerate more dead nodes than existing algorithms.Simulation was done under OMNeT++ platform and the results show that the LA-TPA strategy is more effective in constructing a well-performance network topology based on various application scenarios and can prolong the network lifetime significantly.
基金Project(51405010)supported by the National Natural Science Foundation of ChinaProject(2011BAG09B00)supported by the National Science and Technology Support Program of China
文摘For the purpose of improving efficiency and realizing start–stop function, an electric oil pump(EOP) is integrated into an 8-speed automatic transmission(AT). A mathematical model is built to calculate the transmission power loss and the hydraulic system leakage. Based on this model, a flow-based control strategy is developed for EOP to satisfy the system flow requirement. This control strategy is verified through the forward driving simulation. The results indicate that there is a best combination for the size of mechanical oil pump(MOP) and EOP in terms of minimum energy consumption. In order to get a quick and smooth starting process, control strategies of the EOP and the on-coming clutch are proposed. The test environment on a prototype vehicle is built to verify the feasibility of the integrated EOP and its control strategies. The results show that the selected EOP can satisfy the flow requirement and a quick and smooth starting performance is achieved in the start–stop function. This research has a high value for the forward design of EOP in automatic transmissions with respect to efficiency improvement and start–stop function.
基金Project(60673165) supported by the National Natural Science Foundation of China
文摘To address the issue of resource co-allocation with constraints to budget and deadline in grid environments, a novel co-allocation model based on virtual resource agent was proposed. The model optimized resources deployment and price scheme through a three-side co-allocation mechanism, and applied queuing system to model the work of grid resources for providing quantitative deadline guarantees for grid applications. The validity and solutions of the model were presented theoretically. Extensive simulations were conducted to examine the effectiveness and the performance of the model by comparing with other co-allocation policies in terms of deadline violation rate, resource benefit and resource utilization. Experimental results show that compared with the three typical co-allocation policies, the proposed model can reduce the deadline violation rate to about 3.5% for the grid applications with constraints to budget and deadline. Also, the system benefits can be increased by about 30% compared with the those widely-used co-allocation policies.
基金Projects(90815025,51178034) supported by the National Natural Science Foundation of China
文摘The theoretical study of a semi-active predictive control(SAPC) system with magnetorheological(MR) dampers to reduce the responses of seismically excited structures was presented.The SAPC scheme is based on a prediction model of the system response to obtain the control actions by minimizing an object function,which has a function of self-compensation for time delay occurring in real application.A double-ended shear mode combined with a valve mode MR damper,named MRF-04K damper,with the maximum force of 20 kN was designed and manufactured,and parameters of the Bouc-Wen hysteresis model were determined to portray the behavior of this damper.As an example,a 5-story building frame equipped with 2 MRF-04K dampers was presented to demonstrate the performance of the proposed SAPC scheme for addressing time delay and reducing the structural responses under different earthquakes.Comparison with the uncontrolled structure,the passive-off and passive-on cases indicates that both the peak and the norm values of structural responses are all clearly reduced,and the SAPC scheme has a better performance than the two passive cases.
基金Project(2010QZZD021)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2015F024)supported by China Railway Science and Technology Research Development Program
文摘In order to apply overbooking idea in Chinese railway freight industry to improve revenue, a Markov decision process(dynamic programming) model for railway freight reservation was formulated and the overbooking limit level was proposed as a control policy. However, computing the dynamic programming treatment needs six nested loops and this will be burdensome for real-world problems. To break through the calculation limit, the properties of value function were analyzed and the overbooking protection level was proposed to reduce the calculating quantity. The simulation experiments show that the overbooking protection level for the lower-fare class is higher than that for the higher-fare class, so the overbooking strategy is nested by fare class. Besides, by analyzing the influence on the overbooking strategy of freight arrival probability and cancellation probability, the proposed approach is efficient and also has a good application prospect in reality. Also, compared with the existing reservation(FCFS), the overbooking strategy performs better in the fields of vacancy reduction and revenue improvement.
基金Projects(61102106,61102105)supported by the National Natural Science Foundation of ChinaProject(2013M530148)supported by China Postdoctoral Science Foundation+1 种基金Project(HEUCF140809)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(LBH-Z13054)supported by Heilongjiang Postdoctoral Fund,China
文摘In order to effectively solve combinatorial optimization problems,a membrane-inspired quantum bee colony optimization(MQBCO)is proposed for scientific computing and engineering applications.The proposed MQBCO algorithm applies the membrane computing theory to quantum bee colony optimization(QBCO),which is an effective discrete optimization algorithm.The global convergence performance of MQBCO is proved by Markov theory,and the validity of MQBCO is verified by testing the classical benchmark functions.Then the proposed MQBCO algorithm is used to solve decision engine problems of cognitive radio system.By hybridizing the QBCO and membrane computing theory,the quantum state and observation state of the quantum bees can be well evolved within the membrane structure.Simulation results for cognitive radio system show that the proposed decision engine method is superior to the traditional intelligent decision engine algorithms in terms of convergence,precision and stability.Simulation experiments under different communication scenarios illustrate that the balance between three objective functions and the adapted parameter configuration is consistent with the weights of three normalized objective functions.
基金Project(61105067)supported by the National Natural Science Foundation of China
文摘A new multi-species particle swarm optimization with a two-level hierarchical topology and the orthogonal learning strategy(OMSPSO) is proposed, which enhances the global search ability of particles and increases their convergence rates. The numerical results on 10 benchmark functions demonstrated the effectiveness of our proposed algorithm. Then, the proposed algorithm is presented to design a butterfly-shaped microstrip patch antenna. Combined with the HFSS solver, a butterfly-shaped patch antenna with a bandwidth of about 40.1% is designed by using the proposed OMSPSO. The return loss of the butterfly-shaped antenna is greater than 10 d B between 4.15 and 6.36 GHz. The antenna can serve simultaneously for the high-speed wireless computer networks(5.15–5.35 GHz) and the RFID systems(5.8 GHz).