期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于贝叶斯网模型的多级计分诊断测验分类及比较研究
被引量:
2
1
作者
喻晓锋
肖遇春
秦春影
《心理与行为研究》
CSSCI
北大核心
2023年第1期49-57,共9页
贝叶斯网模型提供了一种方便和直观的框架结构来表示变量间的关系,非常适合在诊断测验中对教育评估的内容进行建模。本研究将两种贝叶斯网分类模型与序列多级计分诊断模型S-GDINA进行综合比较。考察两种贝叶斯网分类模型与S-GDINA在Q矩...
贝叶斯网模型提供了一种方便和直观的框架结构来表示变量间的关系,非常适合在诊断测验中对教育评估的内容进行建模。本研究将两种贝叶斯网分类模型与序列多级计分诊断模型S-GDINA进行综合比较。考察两种贝叶斯网分类模型与S-GDINA在Q矩阵正确界定和包含一定比例(25%、 30%)的错误时,两者对被试的分类性能;并将贝叶斯网分类模型应用到实证数据中,展示贝叶斯网分类模型在实证数据中的分类过程和分类性能。研究结果表明:当Q矩阵由专家正确界定时,朴素贝叶斯分类模型的分类效果与S-GDINA模型相差不大,同样可以达到很好的分类效果,树增广的朴素贝叶斯分类模型的分类性能也能达到良好。实证结果进一步表明,将贝叶斯网分类模型应用于教育测量领域中的诊断分类工具是有其优势和可行的,尤其是当测验数据对于所选用诊断模型的拟合较差、测验的Q矩阵中包含错误或测验数据中包含较多的噪音时。
展开更多
关键词
认知
诊断
序列多级计分诊断模型
贝叶斯网络
在线阅读
下载PDF
职称材料
题名
基于贝叶斯网模型的多级计分诊断测验分类及比较研究
被引量:
2
1
作者
喻晓锋
肖遇春
秦春影
机构
江西师范大学心理学院
南昌师范学院数学与信息科学学院
出处
《心理与行为研究》
CSSCI
北大核心
2023年第1期49-57,共9页
基金
江西省教育科学“十四五”规划2021年度课题(21YB027)。
文摘
贝叶斯网模型提供了一种方便和直观的框架结构来表示变量间的关系,非常适合在诊断测验中对教育评估的内容进行建模。本研究将两种贝叶斯网分类模型与序列多级计分诊断模型S-GDINA进行综合比较。考察两种贝叶斯网分类模型与S-GDINA在Q矩阵正确界定和包含一定比例(25%、 30%)的错误时,两者对被试的分类性能;并将贝叶斯网分类模型应用到实证数据中,展示贝叶斯网分类模型在实证数据中的分类过程和分类性能。研究结果表明:当Q矩阵由专家正确界定时,朴素贝叶斯分类模型的分类效果与S-GDINA模型相差不大,同样可以达到很好的分类效果,树增广的朴素贝叶斯分类模型的分类性能也能达到良好。实证结果进一步表明,将贝叶斯网分类模型应用于教育测量领域中的诊断分类工具是有其优势和可行的,尤其是当测验数据对于所选用诊断模型的拟合较差、测验的Q矩阵中包含错误或测验数据中包含较多的噪音时。
关键词
认知
诊断
序列多级计分诊断模型
贝叶斯网络
Keywords
cognitive diagnosis
S-GDINA
Bayesian networks
分类号
B842 [哲学宗教—基础心理学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于贝叶斯网模型的多级计分诊断测验分类及比较研究
喻晓锋
肖遇春
秦春影
《心理与行为研究》
CSSCI
北大核心
2023
2
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部