提出一种基于广义回归神经网络(generalized regression neural network,GRNN)的风力发电机组性能预测及异常状态预警方法。通过分析运行中影响风机主轴转速和发电功率的主要因素,确定了性能预测模型的输入和输出参数。运用监控与数据采...提出一种基于广义回归神经网络(generalized regression neural network,GRNN)的风力发电机组性能预测及异常状态预警方法。通过分析运行中影响风机主轴转速和发电功率的主要因素,确定了性能预测模型的输入和输出参数。运用监控与数据采集(supervisory control and data acquisition,SCADA)系统的真实历史数据,采用广义回归神经网络(GRNN)建立了风电机组的性能预测模型,通过比较模型的预测精度对GRNN的平滑因子进行了优选。以此模型为基础,采用滑动数据窗方法实时计算风电机组转速和功率的残差评价指标,当评价指标连续超过预先设定的阈值时,则可判断风电机组状态异常。采用某实际风电机组若干历史故障发生前后的真实SCADA数据进行模拟,验证了方法的有效性。展开更多
针对现有的高压直流(high voltage direct current,HVDC)输电线路故障识别方法识别准确率低,且无法同时准确识别低阻和高阻故障的问题,提出一种改进变分模态分解(variational mode decomposition,VMD)-多尺度排列熵(multi-scale permuta...针对现有的高压直流(high voltage direct current,HVDC)输电线路故障识别方法识别准确率低,且无法同时准确识别低阻和高阻故障的问题,提出一种改进变分模态分解(variational mode decomposition,VMD)-多尺度排列熵(multi-scale permutation entropy,MPE)结合广义回归神经网络(general regression neural network,GRNN)的HVDC输电线路故障辨识方法。首先,采用鲸鱼算法改进后的VMD对故障电流信号进行分解,并选择合适的本征模态函数(intrinsic mode function,IMF)分量计算多尺度排列熵和IMF能量和比值提取故障特征组成故障特征向量;其次,将特征向量输入到GRNN网络中进行训练与测试,利用GRNN网络对小样本数据的高分类能力识别不同类型的故障。实验结果表明,所提出的方法对HVDC输电线路不同类型故障辨识准确率高,无论发生低阻或高阻故障都能够准确辨识,耐受过渡电阻能力强,在小样本故障辨识方面性能突出,可靠性高。展开更多
文摘提出一种基于广义回归神经网络(generalized regression neural network,GRNN)的风力发电机组性能预测及异常状态预警方法。通过分析运行中影响风机主轴转速和发电功率的主要因素,确定了性能预测模型的输入和输出参数。运用监控与数据采集(supervisory control and data acquisition,SCADA)系统的真实历史数据,采用广义回归神经网络(GRNN)建立了风电机组的性能预测模型,通过比较模型的预测精度对GRNN的平滑因子进行了优选。以此模型为基础,采用滑动数据窗方法实时计算风电机组转速和功率的残差评价指标,当评价指标连续超过预先设定的阈值时,则可判断风电机组状态异常。采用某实际风电机组若干历史故障发生前后的真实SCADA数据进行模拟,验证了方法的有效性。