期刊文献+
共找到39篇文章
< 1 2 >
每页显示 20 50 100
改进的MVO-GRNN神经网络岩爆预测模型研究 被引量:7
1
作者 侯克鹏 包广拓 孙华芬 《安全与环境学报》 CAS CSCD 北大核心 2024年第3期923-932,共10页
准确预测岩爆烈度等级能有效指导岩爆灾害的防控。根据影响岩爆发生及烈度等级的3个因素构建岩爆评价指标体系,提出一种基于改进多元宇宙算法(Improved Multi-Verse Optimizer,IMVO)优化广义回归神经网络(General Regression Neural Net... 准确预测岩爆烈度等级能有效指导岩爆灾害的防控。根据影响岩爆发生及烈度等级的3个因素构建岩爆评价指标体系,提出一种基于改进多元宇宙算法(Improved Multi-Verse Optimizer,IMVO)优化广义回归神经网络(General Regression Neural Network,GRNN)的岩爆预测模型。在普通多元宇宙算法(MVO)的基础上,运用自适应平衡机制调节MVO算法中的虫洞存在概率(V_(WEP))和旅行距离率(V_(TDR))两个重要参数来改进该算法;再运用改进的多元宇宙算法优化广义回归神经网络的光滑度,通过训练数据优选出最佳光滑因子σ,得到IMVO-GRNN神经网络岩爆烈度预测模型;最后结合工程实例验证模型的性能。研究表明,该模型相比传统模型寻优能力更强,精度更高,为岩爆预测提供了一种新的思路。 展开更多
关键词 安全工程 岩爆预测 多元宇宙算法 广义归神经网络(grnn) 虫洞存在概率 旅行距离率
在线阅读 下载PDF
广义回归神经网络(GRNN)在AMT挡位判别中的应用 被引量:8
2
作者 杨小辉 徐颖强 +2 位作者 李世杰 王耀锋 张玉同 《机械设计与制造》 北大核心 2009年第5期72-74,共3页
通过分析传统方法研究AMT换档规律存在的问题和神经网络在不能获得精确数学模型的非线性系统中能达到最优控制的特性以及在线学习的能力等,提出基于广义回归神经网络(GRNN)进行AMT的换档规律的研究,并针对某4档轿车机械自动变速器,建立... 通过分析传统方法研究AMT换档规律存在的问题和神经网络在不能获得精确数学模型的非线性系统中能达到最优控制的特性以及在线学习的能力等,提出基于广义回归神经网络(GRNN)进行AMT的换档规律的研究,并针对某4档轿车机械自动变速器,建立该车自动变速两个参数(车速、油门开度)神经网络控制模型,运用Matlab软件进行换档过程的仿真分析。研究结果表明:利用GRNN研究AMT的换档规律过程简单、适应性强等,能够正确有效地进行车辆档位判别。 展开更多
关键词 广义归神经网络(grnn) 电控机械式自动变速器(AMT) 换挡规律 仿真
在线阅读 下载PDF
广义回归神经网络在煤灰熔点预测中的应用 被引量:31
3
作者 周昊 郑立刚 +1 位作者 樊建人 岑可法 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2004年第11期1479-1482,共4页
为了提高估算煤灰熔点的精度,采用广义回归神经网络(GRNN)对求解煤灰熔点问题进行了建模.将煤灰组分作为网络输入,煤灰软化温度作为网络输出,采用实验数据训练网络,训练完成的网络作为模型预测煤灰熔点.仿真结果表明,GRNN的预测值与实... 为了提高估算煤灰熔点的精度,采用广义回归神经网络(GRNN)对求解煤灰熔点问题进行了建模.将煤灰组分作为网络输入,煤灰软化温度作为网络输出,采用实验数据训练网络,训练完成的网络作为模型预测煤灰熔点.仿真结果表明,GRNN的预测值与实验值的最大相对误差为2.81%,而反向传播神经网络(BPNN)预测煤灰熔点的相对误差为3.62%.由于GRNN可应用于小样本问题的学习,GRNN比BPNN对煤灰熔点具有更好的预测和泛化能力.GRNN具有设计简单与收敛快的优点,并提高了实时处理与反映最新运行工况参数的预测能力. 展开更多
关键词 灰熔点 灰组分 广义归神经网络 grnn
在线阅读 下载PDF
灰色广义回归神经网络在木薯产量预测中的应用 被引量:3
4
作者 于平福 陆宇明 +2 位作者 韦莉萍 龙文卿 苏晓波 《西南农业学报》 CSCD 北大核心 2009年第6期1709-1713,共5页
将GM(1,1)预测模型与广义回归神经网络(GRNN)相融合,构建一种兼具两者优点、互补型的灰色广义回归神经网络(GGRNN)。以1985-2007年度广西木薯鲜薯总产量为数据样本,采用GGRNN模型进行广西木薯产量预测研究。研究结果表明,GGRNN训练期平... 将GM(1,1)预测模型与广义回归神经网络(GRNN)相融合,构建一种兼具两者优点、互补型的灰色广义回归神经网络(GGRNN)。以1985-2007年度广西木薯鲜薯总产量为数据样本,采用GGRNN模型进行广西木薯产量预测研究。研究结果表明,GGRNN训练期平均拟合指数、预测期平均拟合指数分别为0.99和0.93,分别比GM(1,1)模型高0.09和0.04。该组合模型在拟合精度和预测精度方面均优于单一的GM(1,1)预测模型,并具有自学习能力、非线性映射能力以及适应性强等优点,为木薯产量预测的定量化和智能化提供了一条有效途径。 展开更多
关键词 灰色预测模型GM(1 1) 广义归神经网络(grnn) 木薯产量预测
在线阅读 下载PDF
基于广义回归神经网络-柔性最大值分类模型的轴承故障诊断方法 被引量:9
5
作者 陈剑 吕伍佯 +1 位作者 庄学凯 陶善勇 《振动与冲击》 EI CSCD 北大核心 2020年第21期1-8,16,共9页
针对复杂工况下的滚动轴承振动信号,提出一种基于广义回归神经网络-柔性最大值分类模型的故障诊断分类方法,实现故障模式的识别。对滚动轴承振动信号进行变分模态分解,特征提取等预处理得到特征数据集,并将其划分为训练集,验证集和测试... 针对复杂工况下的滚动轴承振动信号,提出一种基于广义回归神经网络-柔性最大值分类模型的故障诊断分类方法,实现故障模式的识别。对滚动轴承振动信号进行变分模态分解,特征提取等预处理得到特征数据集,并将其划分为训练集,验证集和测试集;使用训练集和验证集训练广义回归神经网络-柔性最大值分类模型,同时引入灰狼优化算法优选该模型的关键参数平滑因子得到理想的分类模型;将训练好的模型应用测试集,输出故障识别结果;通过模拟试验采集不同工况下的轴承故障数据,进行方法有效性验证。结果表明该方法能在小样本训练集下实现对不同工况下的轴承故障的有效诊断,是一种适用于实际工况的故障诊断方法。 展开更多
关键词 故障诊断 滚动轴承 广义归神经网络(grnn) 柔性最大值归一化 灰狼优化(GWO)
在线阅读 下载PDF
基于广义回归神经网络的风电机组性能预测模型及状态预警 被引量:25
6
作者 崔恺 许宜菲 +5 位作者 李雪松 杜亦航 李洋 马良玉 乔福宇 刘卫亮 《科学技术与工程》 北大核心 2020年第32期13220-13228,共9页
提出一种基于广义回归神经网络(generalized regression neural network,GRNN)的风力发电机组性能预测及异常状态预警方法。通过分析运行中影响风机主轴转速和发电功率的主要因素,确定了性能预测模型的输入和输出参数。运用监控与数据采... 提出一种基于广义回归神经网络(generalized regression neural network,GRNN)的风力发电机组性能预测及异常状态预警方法。通过分析运行中影响风机主轴转速和发电功率的主要因素,确定了性能预测模型的输入和输出参数。运用监控与数据采集(supervisory control and data acquisition,SCADA)系统的真实历史数据,采用广义回归神经网络(GRNN)建立了风电机组的性能预测模型,通过比较模型的预测精度对GRNN的平滑因子进行了优选。以此模型为基础,采用滑动数据窗方法实时计算风电机组转速和功率的残差评价指标,当评价指标连续超过预先设定的阈值时,则可判断风电机组状态异常。采用某实际风电机组若干历史故障发生前后的真实SCADA数据进行模拟,验证了方法的有效性。 展开更多
关键词 风电机组 性能预测模型 广义归神经网络(grnn) 运行状态监测 参数预警
在线阅读 下载PDF
改进变分模态分解-多尺度排列熵结合广义回归神经网络的高压直流输电线路故障辨识 被引量:11
7
作者 刘维 刘辉 《科学技术与工程》 北大核心 2022年第1期211-219,共9页
针对现有的高压直流(high voltage direct current,HVDC)输电线路故障识别方法识别准确率低,且无法同时准确识别低阻和高阻故障的问题,提出一种改进变分模态分解(variational mode decomposition,VMD)-多尺度排列熵(multi-scale permuta... 针对现有的高压直流(high voltage direct current,HVDC)输电线路故障识别方法识别准确率低,且无法同时准确识别低阻和高阻故障的问题,提出一种改进变分模态分解(variational mode decomposition,VMD)-多尺度排列熵(multi-scale permutation entropy,MPE)结合广义回归神经网络(general regression neural network,GRNN)的HVDC输电线路故障辨识方法。首先,采用鲸鱼算法改进后的VMD对故障电流信号进行分解,并选择合适的本征模态函数(intrinsic mode function,IMF)分量计算多尺度排列熵和IMF能量和比值提取故障特征组成故障特征向量;其次,将特征向量输入到GRNN网络中进行训练与测试,利用GRNN网络对小样本数据的高分类能力识别不同类型的故障。实验结果表明,所提出的方法对HVDC输电线路不同类型故障辨识准确率高,无论发生低阻或高阻故障都能够准确辨识,耐受过渡电阻能力强,在小样本故障辨识方面性能突出,可靠性高。 展开更多
关键词 变分模态分解(VMD) 多尺度排列熵(MPE) 特征提取 广义归神经网络(grnn) 小样本故障辨识
在线阅读 下载PDF
RBF与GRNN神经网络模型在河流健康评价中的应用——以文山州区域中小河流健康评价为例 被引量:26
8
作者 崔东文 《中国农村水利水电》 北大核心 2012年第3期56-61,共6页
利用层次分析法构建符合区域中小河流健康评价指标体系和分级标准,基于RBF与GRNN神经网络算法原理,分别构建RBF与GRNN神经网络算法的河流健康评价模型,采用内插法构造网络训练样本,将河流健康分级评价标准值作为"预测"样本进... 利用层次分析法构建符合区域中小河流健康评价指标体系和分级标准,基于RBF与GRNN神经网络算法原理,分别构建RBF与GRNN神经网络算法的河流健康评价模型,采用内插法构造网络训练样本,将河流健康分级评价标准值作为"预测"样本进行"预测",并将结果作为河流健康等级评价的划分依据,对文山州区域中小河流健康状况进行评价分析。结果表明:①RBF与GRNN神经网络模型对区域中小河流健康评价结果完全相同,与BP神经网络评价结果基本相同,表明研究建立的河流健康评价模型和评价方法均是合理可行的,同BP网络算法相比,RBF与GRNN神经网络模型有收敛速度快、预测精度高、不易陷入局部极小值等优点,且调整参数较少,只有一个SPREAD参数,可以更快地预测评价网络,具有较大的计算优势。②文山州区域主要河流健康评价等级为Ⅱ~Ⅲ级,即处于健康与亚健康之间,客观反映了区域中小河流健康状况,可为区域河流的可持续管理和生态环境建设提供参考依据。 展开更多
关键词 河流健康评价 径向基神经网络(RBF) 广义归神经网络(grnn) 中小河流
在线阅读 下载PDF
基于改进蝙蝠算法优化广义回归神经网络的岩质边坡稳定性预测 被引量:14
9
作者 杨雅萍 张文莲 孙晓云 《科学技术与工程》 北大核心 2021年第20期8719-8726,共8页
在对边坡进行稳定性评价时,传统的数值分析法计算量大,对经验的依赖性强,无法很好地反映边坡动态开放和非线性的特征。针对岩质边坡的上述特点,采用广义Hoek-Brown非线性破坏准则力学参数作为边坡稳定性的影响因素。利用改进后的蝙蝠算... 在对边坡进行稳定性评价时,传统的数值分析法计算量大,对经验的依赖性强,无法很好地反映边坡动态开放和非线性的特征。针对岩质边坡的上述特点,采用广义Hoek-Brown非线性破坏准则力学参数作为边坡稳定性的影响因素。利用改进后的蝙蝠算法(bat algorithm,BA)搜寻最优解来更新广义回归神经网络(generalized regression neural network,GRNN)的光滑因子,建立改进的BA-GRNN边坡稳定性预测网络。针对蝙蝠算法种群个体缺乏变异机制,在迭代过程中寻优能力下降的问题,引入交叉变异算子改进蝙蝠种群的多样性,使其保持持续优化能力。将改进BA-GRNN网络、BA-GRNN和GRNN 3种网络得到预测结果进行对比,发现改进后的BA-GRNN预测网络对于边坡状态和安全系数预测精度更高,在边坡稳定性的预测方面有更好的适用性。 展开更多
关键词 交叉变异算子 蝙蝠算法(BA) 广义归神经网络(grnn) 边坡稳定性 广义Hoek-Brown准则
在线阅读 下载PDF
Elman与GRNN神经网络模型在水环境承载力评价中的应用——以文山州区域水环境承载力评价为例 被引量:4
10
作者 郭婉娥 《水资源与水工程学报》 2013年第4期184-188,194,共6页
利用层次分析法构建符合区域水环境承载力的评价指标体系和分级标准,基于Elman神经网络与广义回归神经网络(GRNN)算法原理,提出Elman与GRNN神经网络水环境承载力评价模型,采用内插法构造网络训练样本,将水环境承载力分级评价标准阈值样... 利用层次分析法构建符合区域水环境承载力的评价指标体系和分级标准,基于Elman神经网络与广义回归神经网络(GRNN)算法原理,提出Elman与GRNN神经网络水环境承载力评价模型,采用内插法构造网络训练样本,将水环境承载力分级评价标准阈值样本进行评价,将结果作为区域水环境承载力等级评价的划分依据,对文山州不同规划水平年水环境承载力进行评价。结果表明:文山州不同规划水平年水环境承载力处于绝对可承载与基本可承载之间,客观反映了区域水环境现状及规划期望效果,可为区域水环境承载力评价和研究提供参考。Elman与GRNN神经网络模型评价结果基本相同,表明研究建立的区域水环境承载力评价模型和评价方法均是合理可行的,二者均可作为区域水环境承载力评价的选用模型。 展开更多
关键词 水环境 承载力评价 ELMAN神经网络 广义归神经网络(grnn) 文山州
在线阅读 下载PDF
用神经网络实现VBR视频通信量的在线预测 被引量:2
11
作者 苏晓星 常胜江 +3 位作者 熊涛 郜洪云 申金媛 张延炘 《电子学报》 EI CAS CSCD 北大核心 2005年第7期1163-1167,共5页
VBR(VaribleBitRate)视频信号具有时变性、非线性和突发性等特点,实现该信号通信量的高精度预测难度较大.针对以上问题,本文提出了一种用于VBR视频通信量预测的自适应神经网络模型,网络训练采用离线与在线相结合的方式,同时通过删除不... VBR(VaribleBitRate)视频信号具有时变性、非线性和突发性等特点,实现该信号通信量的高精度预测难度较大.针对以上问题,本文提出了一种用于VBR视频通信量预测的自适应神经网络模型,网络训练采用离线与在线相结合的方式,同时通过删除不重要的权重,以优化网络的拓扑结构,提高网络的推广能力,降低网络在线学习的计算复杂度;对VBR视频通信量预测的模拟结果表明该模型具有高的预测精度,并能满足通信系统对预测实时性的要求. 展开更多
关键词 视频通信 时延神经网络 广义卡尔曼滤波 递归最小方差
在线阅读 下载PDF
基于神经网络的数据融合在废气测量中的应用 被引量:2
12
作者 朱伟兴 李丽 庞敏 《中国安全科学学报》 CAS CSCD 2007年第6期162-165,共4页
数据融合方法通过提取各个影响因素之间的特征关系,进行数据之间的融合。针对因传感器故障而失真的数据,综合考虑对畜禽场排放的某一废气测量值的时间、空间和环境等多种影响因素,使用基于神经网络的数据融合方法来估算该废气的浓度,实... 数据融合方法通过提取各个影响因素之间的特征关系,进行数据之间的融合。针对因传感器故障而失真的数据,综合考虑对畜禽场排放的某一废气测量值的时间、空间和环境等多种影响因素,使用基于神经网络的数据融合方法来估算该废气的浓度,实现失真数据的恢复,从而精确地测量出养殖场连续排放的有害气体的总量,对超标排放进行监控。以氨气(NH3)浓度数据的处理为例,应用MATLAB软件,其仿真结果表明:估算最大相对误差为7.83%,证明基于神经网络的数据融合方法的有效性。 展开更多
关键词 广义归神经网络(grnn) 数据融合 禽畜养殖场 废气 缺失数据
在线阅读 下载PDF
基于多目标的模糊神经网络及在pH控制过程中的应用 被引量:1
13
作者 陶吉利 王宁 陈晓明 《化工学报》 EI CAS CSCD 北大核心 2009年第11期2820-2826,共7页
设计了一种基于多目标的动态模糊递归神经网络(FRNN)建模方法,用于pH中和过程的广义预测控制。所设计的多目标优化算法以提高拟合精度和简化网络结构为原则,同时优化模糊神经网络中的模糊规则数、隶属度函数中心点及其宽度,由此得到的F... 设计了一种基于多目标的动态模糊递归神经网络(FRNN)建模方法,用于pH中和过程的广义预测控制。所设计的多目标优化算法以提高拟合精度和简化网络结构为原则,同时优化模糊神经网络中的模糊规则数、隶属度函数中心点及其宽度,由此得到的FRNN模型可以高精度拟合pH中和过程。依据该动态模型,在控制过程的每一个控制周期得到其局部线性模型,将广义预测控制中复杂的非线性优化问题转化为简单的二次线性规划问题。仿真对比结果验证了所提方法的有效性。 展开更多
关键词 多目标优化 模糊归神经网络 广义预测控制 PH中和过程
在线阅读 下载PDF
基于Elman神经网络模型的IGBT寿命预测 被引量:22
14
作者 刘子英 朱琛磊 《半导体技术》 CAS 北大核心 2019年第5期395-400,共6页
建立了Elman神经网络模型来实现绝缘栅双极型晶体管(IGBT)的寿命预测。分析了IGBT的结构及其失效原因,结合NASA埃姆斯中心的加速热老化试验数据,确定了以集电极-发射极关断电压尖峰峰值作为失效预测依据。利用高斯滤波的方法对试验数据... 建立了Elman神经网络模型来实现绝缘栅双极型晶体管(IGBT)的寿命预测。分析了IGBT的结构及其失效原因,结合NASA埃姆斯中心的加速热老化试验数据,确定了以集电极-发射极关断电压尖峰峰值作为失效预测依据。利用高斯滤波的方法对试验数据进行预处理,构建了单、多隐层Elman神经网络寿命预测模型,并构建了广义回归神经网络(GRNN)寿命预测模型作为对比模型。采用均方误差、平均绝对误差、最大相对误差作为各模型预测性能的评估指标。结果表明,提出的Elman神经网络模型比GRNN模型有更好的预测效果。二隐层的Elman神经网络模型均方误差为0.202 0%,平均绝对误差为0.387 6%,最大相对误差为3.023 0%,可以更好地实现IGBT寿命的预测。 展开更多
关键词 绝缘栅双极型晶体管(IGBT) 失效 ELMAN神经网络 广义归神经网络(grnn) 寿命预测
在线阅读 下载PDF
主元分析-神经网络岩爆等级预测模型 被引量:12
15
作者 张凯 张科 李昆 《中国安全科学学报》 CAS CSCD 北大核心 2021年第3期96-104,共9页
为准确可靠地预测岩爆灾害,构建结合主元分析法(PCA)的径向基神经网络(RBFNN)、概率神经网络(PNN)和广义回归神经网络(GRNN)岩爆预测模型。选取6个常用的参数构成岩爆预测指标体系,采用PCA消除各指标间的相关性并降维,得出3个线性无关... 为准确可靠地预测岩爆灾害,构建结合主元分析法(PCA)的径向基神经网络(RBFNN)、概率神经网络(PNN)和广义回归神经网络(GRNN)岩爆预测模型。选取6个常用的参数构成岩爆预测指标体系,采用PCA消除各指标间的相关性并降维,得出3个线性无关的主元即岩爆综合预测指标Y1、Y2和Y3,构成RBFNN、PNN、GRNN这3种神经网络的输入向量。研究结果表明:这3种PCA-神经网络模型,其岩爆预测结果优于对应的RBFNN、PNN、GRNN模型,提高预测准确率并缩短运算时间。从局部准确率、整体准确率及运算时间这3个方面综合比较,各模型的预测能力从强到弱依次为:PCA-GRNN> PCA-PNN> PCA-RBFNN> PNN> GRNN> RBFNN。 展开更多
关键词 主元分析法(PCA) 径向基神经网络(RBFNN) 概率神经网络(PNN) 广义归神经网络(grnn) 岩爆预测
在线阅读 下载PDF
基于神经网络的转向节热锻成形工艺优化 被引量:2
16
作者 邱劲 扶教龙 《热加工工艺》 北大核心 2022年第9期106-109,共4页
建立了输入层为始锻温度、终锻温度、模具预热温度、锻压速度,输出层为抗拉强度、成形载荷、磨损量的广义回归神经网络(GNRR)模型,基于此模型对汽车转向节热锻成形工艺进行优化。结果表明:使用GRNN神经网络工艺参数优化的汽车转向节锻件... 建立了输入层为始锻温度、终锻温度、模具预热温度、锻压速度,输出层为抗拉强度、成形载荷、磨损量的广义回归神经网络(GNRR)模型,基于此模型对汽车转向节热锻成形工艺进行优化。结果表明:使用GRNN神经网络工艺参数优化的汽车转向节锻件,其抗拉强度由优化前的774 MPa提升到786 MPa,成形载荷、磨损量分别由优化前的25.6 MN、120μm降低到23.5MN、115μm,抗拉强度的提升率为1.55%,成形载荷、磨损量的降低率分别为8.2%、4.2%;最佳热锻工艺参数为始锻温度为1260℃、终锻温度为1140℃、模具预热温度为230℃、锻压速度为48 mm/s。 展开更多
关键词 广义归神经网络(grnn) 汽车转向节 热锻成形 工艺优化
在线阅读 下载PDF
基于SQP和GRNN的商用客车动力学参数自适应辨识
17
作者 房熙博 宁一高 +1 位作者 赵轩 周猛 《汽车安全与节能学报》 北大核心 2025年第4期648-656,共9页
提出了一种基于广义回归神经网络(GRNN)模型和序列二次规划(SQP)算法的自适应辨识策略,用于获取商用客车动力学参数并对其实时辨识。建立GRNN模型,用SQP算法获取GRNN模型的训练集对其进行训练,使其根据车辆的运行状态,自适应辨识出关键... 提出了一种基于广义回归神经网络(GRNN)模型和序列二次规划(SQP)算法的自适应辨识策略,用于获取商用客车动力学参数并对其实时辨识。建立GRNN模型,用SQP算法获取GRNN模型的训练集对其进行训练,使其根据车辆的运行状态,自适应辨识出关键参数;搭建TruckSim与Matlab/Simulink联合仿真平台,在不同工况下进行仿真试验。结果表明:相较于固定参数模型,在正弦波转角工况下,采用该模型的质心侧偏角与TruckSim模型的最大值误差减小73.9%;其侧倾角与TruckSim模型的最大值误差减少了76.7%;在双移线工况下,这2个误差分别减小98.0%和63.1%。从而,证明了本文方法的可行性和有效性。 展开更多
关键词 汽车安全 商用客车 序列二次规划(SQP)算法 广义归神经网络(grnn)模型 动力学参数 自适应辨识
在线阅读 下载PDF
基于GRNN网络和遗传算法的旋翼动平衡调整 被引量:11
18
作者 刘红梅 王少萍 欧阳平超 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2008年第5期507-511,共5页
针对传统旋翼调整方法没有考虑调整参数与振动信号之间的非线性关系,提出一种结合广义回归神经网络GRNN(General Regression Neural Network)和遗传算法的旋翼调整方法,采用GRNN建立旋翼动平衡调整模型,以桨叶调整参数作为GRNN输入,以... 针对传统旋翼调整方法没有考虑调整参数与振动信号之间的非线性关系,提出一种结合广义回归神经网络GRNN(General Regression Neural Network)和遗传算法的旋翼调整方法,采用GRNN建立旋翼动平衡调整模型,以桨叶调整参数作为GRNN输入,以旋翼转轴3个方向的加速度测量值和机身3个方向加速度测量值作为网络输出,建立调整参数与直升机振动信号之间的模型.以直升机振动作为目标函数,采用改进的遗传算法对桨叶调整参数进行寻优,获得直升机振动最小时的桨叶的调整量.飞行实验表明,通过1到2次飞行调整,可使3个方向机身振动(旋翼的一阶振动)为最小,完成旋翼的动平衡调整. 展开更多
关键词 旋翼 动平衡 广义归神经网络(grnn) 遗传算法 优化
在线阅读 下载PDF
GRNN模型在煤与瓦斯突出及瓦斯含量预测中的应用 被引量:22
19
作者 付小平 薛新华 李洪涛 《中国安全科学学报》 CAS CSCD 北大核心 2012年第1期24-28,共5页
煤与瓦斯突出的作用机理非常复杂,是诸多因素如地应力、煤层瓦斯、煤体物理力学性质等共同作用的结果。在分析广义回归神经网络(GRNN)的基本原理和算法的基础上,建立煤与瓦斯突出等级以及基于构造复杂程度定量评价的瓦斯含量GRNN模型。... 煤与瓦斯突出的作用机理非常复杂,是诸多因素如地应力、煤层瓦斯、煤体物理力学性质等共同作用的结果。在分析广义回归神经网络(GRNN)的基本原理和算法的基础上,建立煤与瓦斯突出等级以及基于构造复杂程度定量评价的瓦斯含量GRNN模型。然后用收集到的工程实例样本训练和检验该模型。结果表明,GRNN模型具有很好的预测能力和泛化能力,能较好揭示瓦斯含量和诸影响因素间的关系,可用于煤与瓦斯突出判别以及瓦斯含量预测。同时可以看出,光滑因子的合理选取对于提高GRNN模型的预测精度非常重要,因此,在以后的实际应用中需要不断尝试,找出最合理的光滑因子。 展开更多
关键词 煤与瓦斯突出 构造复杂程度 瓦斯含量 预测 广义归神经网络(grnn)
在线阅读 下载PDF
基于RFOA优化GRNN的水电机组振动预测 被引量:16
20
作者 王继选 胡润志 +3 位作者 管一 张少恺 曹庆皎 王利英 《振动与冲击》 EI CSCD 北大核心 2021年第21期120-126,共7页
针对水电机组振动的非平稳、非线性特点,提出利用改进果蝇算法(RFOA)优化广义回归神经网络模型(RFOA-GRNN)。通过改进果蝇算法的搜索步长和气味浓度判定公式,使该算法的局部寻优能力增强,收敛速度提高。通过8种常用的基准函数对FOA算法... 针对水电机组振动的非平稳、非线性特点,提出利用改进果蝇算法(RFOA)优化广义回归神经网络模型(RFOA-GRNN)。通过改进果蝇算法的搜索步长和气味浓度判定公式,使该算法的局部寻优能力增强,收敛速度提高。通过8种常用的基准函数对FOA算法、DSFOA算法、RFOA算法进行仿真测试,测试结果验证了RFOA算法的有效性。利用三种优化算法优化GRNN的平滑因子,将优化后平滑因子代入GRNN模型对水电机组振动进行预测。结果表明,与FOA-GRNN和DSFOA-GRNN两种预测模型相比,RFOA-GRNN预测模型的预测结果最大相对误差分别降低了99.96%和99.28%。可以得到RFOA-GRNN模型的预测精度和稳定性方面均优于其他两种模型,验证了此模型的有效性。将其应用于水电机组状态趋势预测研究中,可为维护人员提前发现水电机组故障并及时检修进而保证水电机组安全稳定的运行提供保障。 展开更多
关键词 水电机组 改进果蝇优化算法(RFOA) 广义归神经网络(grnn) 平滑因子 振动预测
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部