The traffic equilibrium assignment problem under tradable credit scheme(TCS) in a bi-modal stochastic transportation network is investigated in this paper. To describe traveler’s risk-taking behaviors under uncertain...The traffic equilibrium assignment problem under tradable credit scheme(TCS) in a bi-modal stochastic transportation network is investigated in this paper. To describe traveler’s risk-taking behaviors under uncertainty, the cumulative prospect theory(CPT) is adopted. Travelers are assumed to choose the paths with the minimum perceived generalized path costs, consisting of time prospect value(PV) and monetary cost. At equilibrium with a given TCS, the endogenous reference points and credit price remain constant, and are consistent with the equilibrium flow pattern and the corresponding travel time distributions of road sub-network. To describe such an equilibrium state, the CPT-based stochastic user equilibrium(SUE) conditions can be formulated under TCS. An equivalent variational inequality(VI) model embedding a parameterized fixed point(FP) model is then established, with its properties analyzed theoretically. A heuristic solution algorithm is developed to solve the model, which contains two-layer iterations. The outer iteration is a bisection-based contraction method to find the equilibrium credit price, and the inner iteration is essentially the method of successive averages(MSA) to determine the corresponding CPT-based SUE network flow pattern. Numerical experiments are provided to validate the model and algorithm.展开更多
The major objective of this work was to calculate evacuation capacity and solve the optimal routing problem in a given station topology from a network optimization perspective where station facilities were modelled as...The major objective of this work was to calculate evacuation capacity and solve the optimal routing problem in a given station topology from a network optimization perspective where station facilities were modelled as open finite queueing networks with a multi-objective set of performance measures. The optimal routing problem was determined so that the number of evacuation passengers was maximized while the service level was higher than a certain criterion. An analytical technique for modelling open finite queueing networks, called the iteration generalized expansion method(IGEM), was utilized to calculate the desired outputs. A differential evolution algorithm was presented for determining the optimal routes. As demonstrated, the design methodology which combines the optimization and analytical queueing network models provides a very effective procedure for simultaneously determining the service level and the maximum number of evacuation passengers in the best evacuation routes.展开更多
基金Project(BX20180268)supported by National Postdoctoral Program for Innovative Talent,ChinaProject(300102228101)supported by Fundamental Research Funds for the Central Universities of China+1 种基金Project(51578150)supported by the National Natural Science Foundation of ChinaProject(18YJCZH130)supported by the Humanities and Social Science Project of Chinese Ministry of Education
文摘The traffic equilibrium assignment problem under tradable credit scheme(TCS) in a bi-modal stochastic transportation network is investigated in this paper. To describe traveler’s risk-taking behaviors under uncertainty, the cumulative prospect theory(CPT) is adopted. Travelers are assumed to choose the paths with the minimum perceived generalized path costs, consisting of time prospect value(PV) and monetary cost. At equilibrium with a given TCS, the endogenous reference points and credit price remain constant, and are consistent with the equilibrium flow pattern and the corresponding travel time distributions of road sub-network. To describe such an equilibrium state, the CPT-based stochastic user equilibrium(SUE) conditions can be formulated under TCS. An equivalent variational inequality(VI) model embedding a parameterized fixed point(FP) model is then established, with its properties analyzed theoretically. A heuristic solution algorithm is developed to solve the model, which contains two-layer iterations. The outer iteration is a bisection-based contraction method to find the equilibrium credit price, and the inner iteration is essentially the method of successive averages(MSA) to determine the corresponding CPT-based SUE network flow pattern. Numerical experiments are provided to validate the model and algorithm.
基金Project(2011BAG01B01)supported by the Key Technologies Research Development Program,ChinaProject(RCS2012ZZ002)supported by State Key Laboratory of Rail Traffic Control&Safety,China
文摘The major objective of this work was to calculate evacuation capacity and solve the optimal routing problem in a given station topology from a network optimization perspective where station facilities were modelled as open finite queueing networks with a multi-objective set of performance measures. The optimal routing problem was determined so that the number of evacuation passengers was maximized while the service level was higher than a certain criterion. An analytical technique for modelling open finite queueing networks, called the iteration generalized expansion method(IGEM), was utilized to calculate the desired outputs. A differential evolution algorithm was presented for determining the optimal routes. As demonstrated, the design methodology which combines the optimization and analytical queueing network models provides a very effective procedure for simultaneously determining the service level and the maximum number of evacuation passengers in the best evacuation routes.