针对受模型不确定和外部干扰影响的并联式运载器上升段姿态控制问题,提出了一种基于广义超螺旋算法的自适应滑模有限时间控制方法。首先,将姿态跟踪控制问题转化为跟踪误差系统的镇定问题,建立了面向控制的模型。其次,将单输入单输出(si...针对受模型不确定和外部干扰影响的并联式运载器上升段姿态控制问题,提出了一种基于广义超螺旋算法的自适应滑模有限时间控制方法。首先,将姿态跟踪控制问题转化为跟踪误差系统的镇定问题,建立了面向控制的模型。其次,将单输入单输出(single input single output,SISO)固定时间广义超螺旋算法拓展应用到多输入多输出(multiple input multiple output,MIMO)耦合非线性系统上,基于该算法设计了固定时间状态观测器和自适应滑模有限时间控制器,利用Lyapunov稳定性理论证明了闭环系统的有限时间稳定特性。最后,通过与传统比例微分(proportional and differential,PD)控制器仿真对比,验证了该方法具有更优的控制精度和鲁棒性。展开更多
The liquid cooling system(LCS)of fuel cells is challenged by significant time delays,model uncertainties,pump and fan coupling,and frequent disturbances,leading to overshoot and control oscillations that degrade tempe...The liquid cooling system(LCS)of fuel cells is challenged by significant time delays,model uncertainties,pump and fan coupling,and frequent disturbances,leading to overshoot and control oscillations that degrade temperature regulation performance.To address these challenges,we propose a composite control scheme combining fuzzy logic and a variable-gain generalized supertwisting algorithm(VG-GSTA).Firstly,a one-dimensional(1D)fuzzy logic controler(FLC)for the pump ensures stable coolant flow,while a two-dimensional(2D)FLC for the fan regulates the stack temperature near the reference value.The VG-GSTA is then introduced to eliminate steady-state errors,offering resistance to disturbances and minimizing control oscillations.The equilibrium optimizer is used to fine-tune VG-GSTA parameters.Co-simulation verifies the effectiveness of our method,demonstrating its advantages in terms of disturbance immunity,overshoot suppression,tracking accuracy and response speed.展开更多
文摘针对受模型不确定和外部干扰影响的并联式运载器上升段姿态控制问题,提出了一种基于广义超螺旋算法的自适应滑模有限时间控制方法。首先,将姿态跟踪控制问题转化为跟踪误差系统的镇定问题,建立了面向控制的模型。其次,将单输入单输出(single input single output,SISO)固定时间广义超螺旋算法拓展应用到多输入多输出(multiple input multiple output,MIMO)耦合非线性系统上,基于该算法设计了固定时间状态观测器和自适应滑模有限时间控制器,利用Lyapunov稳定性理论证明了闭环系统的有限时间稳定特性。最后,通过与传统比例微分(proportional and differential,PD)控制器仿真对比,验证了该方法具有更优的控制精度和鲁棒性。
基金Supported by the Major Science and Technology Project of Jilin Province(20220301010GX)the International Scientific and Technological Cooperation(20240402071GH).
文摘The liquid cooling system(LCS)of fuel cells is challenged by significant time delays,model uncertainties,pump and fan coupling,and frequent disturbances,leading to overshoot and control oscillations that degrade temperature regulation performance.To address these challenges,we propose a composite control scheme combining fuzzy logic and a variable-gain generalized supertwisting algorithm(VG-GSTA).Firstly,a one-dimensional(1D)fuzzy logic controler(FLC)for the pump ensures stable coolant flow,while a two-dimensional(2D)FLC for the fan regulates the stack temperature near the reference value.The VG-GSTA is then introduced to eliminate steady-state errors,offering resistance to disturbances and minimizing control oscillations.The equilibrium optimizer is used to fine-tune VG-GSTA parameters.Co-simulation verifies the effectiveness of our method,demonstrating its advantages in terms of disturbance immunity,overshoot suppression,tracking accuracy and response speed.