最小均方(Least Mean Square, LMS)算法因其计算复杂度低、稳定性好的特点已广泛应用于谐波检测领域中。但为了避免权重偏移,进一步提高收敛速度,提出了一种基于线性约束最小均方(Linearly Constrained Least Mean Square, LCLMS)的谐...最小均方(Least Mean Square, LMS)算法因其计算复杂度低、稳定性好的特点已广泛应用于谐波检测领域中。但为了避免权重偏移,进一步提高收敛速度,提出了一种基于线性约束最小均方(Linearly Constrained Least Mean Square, LCLMS)的谐波检测算法。该算法在LMS算法的基础上,对权重变量加入了一个线性约束条件,并应用于不同高斯白噪声环境下谐波、间谐波信号的幅值和相角参数评估。最后又在稳态信号、动态信号和电弧炉算例下检验了该算法的可行性。实验结果表明,该算法可以快速准确地检测不同环境下谐波的相关信息,且相比LMS算法有较快的收敛速度和较高的抗干扰能力。展开更多
随着先进工艺和技术的不断进步,要想保证数据在高速传输中的正确性,均衡器需要有更高的补偿和更低的功耗,才能实现高效通信。基于12 nm互补金属氧化物半导体工艺,设计了一种高增益、低功耗的自适应连续时间线性均衡器(continuous time l...随着先进工艺和技术的不断进步,要想保证数据在高速传输中的正确性,均衡器需要有更高的补偿和更低的功耗,才能实现高效通信。基于12 nm互补金属氧化物半导体工艺,设计了一种高增益、低功耗的自适应连续时间线性均衡器(continuous time linear equalizer,CTLE),该均衡器采用2级级联结构来补偿信道衰减,并提高接收信号的质量。此外,自适应模块通过采用符号-符号最小均方误差(sign-sign least mean square,SS-LMS)算法,使抽头系数加快了收敛速度。仿真结果表明,当传输速率为16 Gbit/s时,均衡器可以补偿-15.53 dB的半波特率通道衰减,均衡器系数在16×10^(4)个单元间隔数据内收敛,并且收敛之后接收误码率低于10^(-12)。展开更多
文摘最小均方(Least Mean Square, LMS)算法因其计算复杂度低、稳定性好的特点已广泛应用于谐波检测领域中。但为了避免权重偏移,进一步提高收敛速度,提出了一种基于线性约束最小均方(Linearly Constrained Least Mean Square, LCLMS)的谐波检测算法。该算法在LMS算法的基础上,对权重变量加入了一个线性约束条件,并应用于不同高斯白噪声环境下谐波、间谐波信号的幅值和相角参数评估。最后又在稳态信号、动态信号和电弧炉算例下检验了该算法的可行性。实验结果表明,该算法可以快速准确地检测不同环境下谐波的相关信息,且相比LMS算法有较快的收敛速度和较高的抗干扰能力。
文摘随着先进工艺和技术的不断进步,要想保证数据在高速传输中的正确性,均衡器需要有更高的补偿和更低的功耗,才能实现高效通信。基于12 nm互补金属氧化物半导体工艺,设计了一种高增益、低功耗的自适应连续时间线性均衡器(continuous time linear equalizer,CTLE),该均衡器采用2级级联结构来补偿信道衰减,并提高接收信号的质量。此外,自适应模块通过采用符号-符号最小均方误差(sign-sign least mean square,SS-LMS)算法,使抽头系数加快了收敛速度。仿真结果表明,当传输速率为16 Gbit/s时,均衡器可以补偿-15.53 dB的半波特率通道衰减,均衡器系数在16×10^(4)个单元间隔数据内收敛,并且收敛之后接收误码率低于10^(-12)。