期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
VRD-YOLO:基于YOLOv5s改进的实时车载影像道路病害检测模型 被引量:2
1
作者 黄文龙 赵好好 +5 位作者 康健 支晓栋 王东川 周维勋 倪欢 管海燕 《南京信息工程大学学报》 北大核心 2025年第2期151-164,共14页
针对车载影像中的道路病害尺寸差异大,小尺度病害多,导致检测精度低的问题,本文提出一种基于YOLOv5s改进的实时车载影像道路病害检测模型VRD-YOLO(Vehicle-mounted image Road Damage Detection-YOLO).首先,提出通道混合滑动Transforme... 针对车载影像中的道路病害尺寸差异大,小尺度病害多,导致检测精度低的问题,本文提出一种基于YOLOv5s改进的实时车载影像道路病害检测模型VRD-YOLO(Vehicle-mounted image Road Damage Detection-YOLO).首先,提出通道混合滑动Transformer模块,增强模型全局上下文建模能力,强化细粒度道路病害语义特征信息提取;其次,引入具有跨层融合和跨尺度融合特性的广义特征金字塔,扩大网络感受野,强化多尺度病害特征融合;再次,设计动态检测头,实现尺度感知、空间感知和任务感知,优化模型特征响应,进一步提升模型的检测性能;最后,构建车载影像道路病害数据集VIRDD(Vehicle-mounted Image Road Damage Dataset),扩充现有道路病害数据集数量及类型,并基于该数据集进行消融和对比实验.实验结果表明:VRD-YOLO在VIRDD数据集上的平均精度均值(mAP@0.5)为74.45%,检测速度(FPS)可达到28.56帧/s,与YOLOv5s模型相比,精确度、召回率、F1分数和mAP分别提升2.79、2.32、2.54和3.19个百分点.同时,通过与其他6种经典及主流目标检测模型比较,VRD-YOLO以最少的模型参数量(9.68×106)获得了最佳的检测精度,验证了本文方法的有效性和优越性. 展开更多
关键词 YOLOv5s 道路病害检测 车载影像 TRANSFORMER 广义特征金字塔 动态检测头
在线阅读 下载PDF
基于改进YOLOv8s的鼓形滚子表面缺陷检测算法 被引量:16
2
作者 王安静 袁巨龙 +2 位作者 朱勇建 陈聪 吴金津 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第2期370-380,387,共12页
为了提高鼓形滚子表面微小瑕疵缺陷检测的精确率和召回率,增强模型对小目标缺陷的检测能力,针对YOLOv8s网络,提出细粒化卷积模块SPD-Conv来代替卷积下采样,细粒化地提取小缺陷的特征.在特征融合模块,引入GFPN特征融合模块,增强相邻层级... 为了提高鼓形滚子表面微小瑕疵缺陷检测的精确率和召回率,增强模型对小目标缺陷的检测能力,针对YOLOv8s网络,提出细粒化卷积模块SPD-Conv来代替卷积下采样,细粒化地提取小缺陷的特征.在特征融合模块,引入GFPN特征融合模块,增强相邻层级间的跨尺度连接和同尺度下的跨层连接,有助于小目标特征信息在卷积网络的传递.在头部增加小目标检测层,提高模型对小缺陷的检测能力.在损失函数方面,利用动态非单调聚焦的Wise-IOU的边界框损失函数替换CIOU,在加快网络收敛的同时,提高网络检测的精度.在自制的鼓形滚子缺陷数据集上进行测试,结果表明,改进的YOLOv8s在倒角数据集、侧面数据集、端面数据集的mAP@0.5分别达到0.911、0.983、0.935,相比于YOLOv8s,m AP@0.5分别提高了6.4%、3.3%、4%,精确度和召回率也有一定的提升,平均每张图片的检测时间为23 ms.与原模型相比,改进的YOLOv8s对小目标缺陷有更好的定位能力和检测精度,检测速度能够满足工业大批量检测的要求. 展开更多
关键词 鼓形滚子 缺陷检测 YOLOv8s 细粒化卷积 广义特征金字塔网络(GFPN) Wise-IOU
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部