期刊文献+
共找到107篇文章
< 1 2 6 >
每页显示 20 50 100
模糊算子神经网络的函数逼近能力 被引量:1
1
作者 梁久祯 赵建民 《广西师范大学学报(自然科学版)》 CAS 2003年第1期18-22,共5页
研究模糊算子神经网络的函数逼近能力.首先提出传统神经网络和模糊神经网络的一般模型即模糊算子神经网络,又将其进一步推广为广义模糊算子神经网络.考察这两种通用模型的代数结构和分析性质,给出其连续函数的一致逼近定理.其结论是传... 研究模糊算子神经网络的函数逼近能力.首先提出传统神经网络和模糊神经网络的一般模型即模糊算子神经网络,又将其进一步推广为广义模糊算子神经网络.考察这两种通用模型的代数结构和分析性质,给出其连续函数的一致逼近定理.其结论是传统神经网络逼近性质的推广,适用于由任何连续算子构成的多层神经网络(模糊神经网络). 展开更多
关键词 模糊算子神经网络 函数逼近能力 逼近定理 代数结构 广义模糊算子神经网络
在线阅读 下载PDF
基于广义动态模糊神经网络的短时车站进站客流量预测 被引量:17
2
作者 李春晓 李海鹰 +2 位作者 蒋熙 许心越 赵阿群 《都市快轨交通》 北大核心 2015年第4期57-61,共5页
针对轨道交通车站短时进站客流的不均衡性、高度非线性和时变性特点,结合逻辑推理能力强的模糊技术与自学习能力强的神经网络,提出一种基于广义动态模糊神经网络(GD-FNN)的短时进站客流量预测方法。以北京轨道交通各车站的进站客流量数... 针对轨道交通车站短时进站客流的不均衡性、高度非线性和时变性特点,结合逻辑推理能力强的模糊技术与自学习能力强的神经网络,提出一种基于广义动态模糊神经网络(GD-FNN)的短时进站客流量预测方法。以北京轨道交通各车站的进站客流量数据为例,分析轨道交通车站的进站客流特征,确定影响短时客流分布的主要因素;然后采用GD-FNN方法构建车站短时进站量的预测模型,实现对北京轨道交通系统若干车站进站量的预测。预测结果表明:该方法与传统的神经网络相比,预测效果更准确(最大相对误差小于8%),稳定性好。 展开更多
关键词 轨道交通 广义动态模糊神经网络 短时客流预测 进站量
在线阅读 下载PDF
基于广义动态模糊神经网络的光伏电池MPPT控制 被引量:23
3
作者 杨旭 曾成碧 陈宾 《电力系统保护与控制》 EI CSCD 北大核心 2010年第13期22-25,共4页
依照最大功率点跟踪(MPPT)的原理,在综合考虑各种不同的控制方法优缺点的基础上,提出了一种新的基于椭圆基的广义动态模糊神经网络(GD-FNN)的光伏电池的智能控制方法。通过GD-FNN算法调节PWM的占空比来控制光伏电池的输出电压,实现阻抗... 依照最大功率点跟踪(MPPT)的原理,在综合考虑各种不同的控制方法优缺点的基础上,提出了一种新的基于椭圆基的广义动态模糊神经网络(GD-FNN)的光伏电池的智能控制方法。通过GD-FNN算法调节PWM的占空比来控制光伏电池的输出电压,实现阻抗匹配,达到能量的最优化。仿真结果表明,这种控制方法能够有效地跟踪到电池的最大功率,并且具有较好的稳定性。 展开更多
关键词 光伏电池 MPPT 椭圆基 广义动态模糊神经网络 智能控制
在线阅读 下载PDF
基于广义动态模糊神经网络的电厂锅炉燃烧优化建模 被引量:20
4
作者 赵敏 颜文俊 郑军 《热力发电》 CAS 北大核心 2010年第3期19-22,29,共5页
针对电厂锅炉燃烧系统的非线性、大延时、时变、干扰频繁等特点,采用模糊神经网络对其建立数学模型。通过所建数学模型研究燃烧效率和氮氧化物排放量之间的关系,从而对锅炉燃烧系统进行优化,以提高锅炉效率和减少污染物排放。仿真结果表... 针对电厂锅炉燃烧系统的非线性、大延时、时变、干扰频繁等特点,采用模糊神经网络对其建立数学模型。通过所建数学模型研究燃烧效率和氮氧化物排放量之间的关系,从而对锅炉燃烧系统进行优化,以提高锅炉效率和减少污染物排放。仿真结果表明,利用改进的广义动态模糊神经网络对电站锅炉燃烧过程建模能够精准地逼近实际数据,且性能优于其它神经网络。 展开更多
关键词 火电厂 锅炉 燃烧 模糊规则 神经网络 广义动态 效率 氮氧化物
在线阅读 下载PDF
广义模糊神经网络(英文) 被引量:9
5
作者 余有灵 徐立鸿 吴启迪 《自动化学报》 EI CSCD 北大核心 2003年第6期867-875,共9页
从非线性系统本身的物理背景出发 ,根据系统本身的内在特性、先验知识和经验建立系统辨识模型 ,提出了广义模糊神经网络 (GFNN) .文中证明了GFNN的函数逼近定理 ,并据此提出了GFNN的结构自组织和参数自学习算法 .GFNN在预设的辨识精度... 从非线性系统本身的物理背景出发 ,根据系统本身的内在特性、先验知识和经验建立系统辨识模型 ,提出了广义模糊神经网络 (GFNN) .文中证明了GFNN的函数逼近定理 ,并据此提出了GFNN的结构自组织和参数自学习算法 .GFNN在预设的辨识精度下能自动辨识系统的网络结构以及进行参数自学习 ,实现GFNN网络结构的真正在线自组织 .仿真结果表明 ,对于慢时变非线性对象 ,GFNN表现出了很强的非线性逼近能力 。 展开更多
关键词 广义模糊神经网络 人工神经网络 自学习算法 函数逼近 非线性系统
在线阅读 下载PDF
基于广义动态模糊神经网络的算法研究 被引量:5
6
作者 马莉 张德丰 《计算机工程与设计》 CSCD 北大核心 2009年第20期4727-4730,共4页
在D-FNN算法基础上,提出了一种新的基于椭圆基函数的广义动态模糊神经网络方法。该方法不仅可以用于系统建模、辨识和控制,而且还可以用于模糊规则的自动生成或抽取。提出了一种模糊-完备性作为在线参数分配机制,避免初始化选择的随机性... 在D-FNN算法基础上,提出了一种新的基于椭圆基函数的广义动态模糊神经网络方法。该方法不仅可以用于系统建模、辨识和控制,而且还可以用于模糊规则的自动生成或抽取。提出了一种模糊-完备性作为在线参数分配机制,避免初始化选择的随机性,同时,该算法不仅能对模糊规则而且能对输入变量的重要性作出评估,从而使每条规则的输入变量的宽度可以根据它对系统性能贡献的大小实施在线自适应调整。开发了相关的算法程序,最后针对实际案例进行了仿真分析,表明了该算法的有效性和高效性。 展开更多
关键词 动态模糊神经网络 广义动态模糊神经网络 椭圆基函数 模糊规则 学习算法
在线阅读 下载PDF
基于广义神经网络与模糊聚类的变压器故障诊断 被引量:17
7
作者 张宇航 兰生 《高压电器》 CAS CSCD 北大核心 2016年第5期116-120,125,共6页
鉴于IEC三比值法在变压器故障诊断中,存在编码缺失和编码边界过于绝对等缺陷,提出了基于广义回归神经网络(GRNN)和模糊C-均值聚类算法(FCM)的变压器故障诊断方法,建立了GRNN-FCM联合变压器故障诊断模型。选取变压器油中5种特征气体体积... 鉴于IEC三比值法在变压器故障诊断中,存在编码缺失和编码边界过于绝对等缺陷,提出了基于广义回归神经网络(GRNN)和模糊C-均值聚类算法(FCM)的变压器故障诊断方法,建立了GRNN-FCM联合变压器故障诊断模型。选取变压器油中5种特征气体体积分数及其三比值编码作为输入特征向量,利用GRNN模型对样本故障进行初步判断(正常、过热、放电、放电兼过热),再采用模糊C-均值聚类算法对样本故障作进一步判断,最终得到具体的故障类型。将该模型与其他几种故障诊断方法进行对比分析,仿真实验结果表明,GRNN-FCM联合变压器故障诊断模型输出值与实际值具有较好一致性且准确度更高,验证了该模型的可行性及实用性。 展开更多
关键词 电力变压器 IEC三比值法 广义回归神经网络 模糊C-均值聚类算法 故障诊断
在线阅读 下载PDF
一种基于神经网络的广义熵模糊聚类算法 被引量:7
8
作者 李凯 曹喆 《电子学报》 EI CAS CSCD 北大核心 2016年第8期1881-1886,共6页
以模糊聚类为基础,将广义熵引入到模糊聚类的目标函数中,提出一种基于模糊熵的模糊聚类的统一形式,即广义熵模糊聚类模型;利用增广拉格朗日求解方法,以及Hopfield神经网络和复突触神经网络解决了基于广义熵的目标函数的优化问题,提出了... 以模糊聚类为基础,将广义熵引入到模糊聚类的目标函数中,提出一种基于模糊熵的模糊聚类的统一形式,即广义熵模糊聚类模型;利用增广拉格朗日求解方法,以及Hopfield神经网络和复突触神经网络解决了基于广义熵的目标函数的优化问题,提出了基于神经网络的广义熵模糊聚类算法,表明了使用神经网络求解的收敛性;同时,给出一种用于确定增广拉格朗日乘子的迭代方法.实验中选取人工生成数据集和UCI标准数据集对提出的算法进行了实验研究,并与常用的聚类算法进行了性能比较. 展开更多
关键词 模糊聚类 广义 增广拉格朗日方法 神经网络
在线阅读 下载PDF
基于模糊聚类广义回归神经网络的网络入侵研究 被引量:3
9
作者 王博 彭玉涛 罗超 《江西师范大学学报(自然科学版)》 CAS 北大核心 2012年第3期288-291,共4页
采用结合模糊聚类和广义神经网络回归聚类分析的方法,对5种网络入侵行为模式进行有效的聚类.首先用模糊c均值聚类算法将入侵数据分为5类,再将聚类的结果中最靠近每类中心的样本作为广义神经网络的聚类训练样本进行数据训练,训练输出的... 采用结合模糊聚类和广义神经网络回归聚类分析的方法,对5种网络入侵行为模式进行有效的聚类.首先用模糊c均值聚类算法将入侵数据分为5类,再将聚类的结果中最靠近每类中心的样本作为广义神经网络的聚类训练样本进行数据训练,训练输出的结果即为该个体所属的入侵类别.实验结果表明:新算法对网络入侵途径的分类精度更高,可为预防网络入侵提供更可靠的数据支持. 展开更多
关键词 聚类算法 模糊聚类 广义回归神经网络 网络入侵检测
在线阅读 下载PDF
一种广义模糊小脑模型神经网络及其仿真研究 被引量:4
10
作者 沈智鹏 郭晨 《系统仿真学报》 EI CAS CSCD 北大核心 2005年第11期2708-2712,共5页
针对传统的小脑模型,在保留CMAC原有增强和局部特性的基础上,结合模糊逻辑的思想,采用模糊隶属度函数作为接收域函数,提出了一种广义模糊小脑模型神经网络(GFAC)。研究了GFAC接受域函数的映射规律、隶属度函数及其参数的选取规律和学习... 针对传统的小脑模型,在保留CMAC原有增强和局部特性的基础上,结合模糊逻辑的思想,采用模糊隶属度函数作为接收域函数,提出了一种广义模糊小脑模型神经网络(GFAC)。研究了GFAC接受域函数的映射规律、隶属度函数及其参数的选取规律和学习算法。仿真结果表明GFAC具有良好的泛化能力和逼近精度。 展开更多
关键词 广义模糊小脑模型神经网络 接受域函数 映射规律 学习算法
在线阅读 下载PDF
基于自适应模糊广义回归神经网络的区域火灾数据推理预测 被引量:3
11
作者 金杉 金志刚 《计算机应用》 CSCD 北大核心 2015年第5期1499-1504,共6页
针对基于反向传播(BP)神经网络和经典概率论及其衍生算法进行火灾损失预测时,存在系统结构复杂、依赖不稳定的探测数据、易陷入局部极小值等缺点,提出一种基于自适应模糊广义回归神经网络(GRNN)的区域火灾数据推理预测算法。在网络输入... 针对基于反向传播(BP)神经网络和经典概率论及其衍生算法进行火灾损失预测时,存在系统结构复杂、依赖不稳定的探测数据、易陷入局部极小值等缺点,提出一种基于自适应模糊广义回归神经网络(GRNN)的区域火灾数据推理预测算法。在网络输入层使用改进模糊C-聚类算法,对初始数据进行权重修正,减少了噪声和孤立点对算法造成的影响,提高了预测值的逼近精度;引入自适应函数优化GRNN算法,调整迭代收敛的扩展速度、变化步长,找到全局最优解,改善了过早收敛问题,提高了搜索效率。实验结果表明,该算法代入已确定火灾损失数据,解决了依赖不稳定探测数据问题,并且具有良好的泛化能力、非线性逼近能力。 展开更多
关键词 自适应 模糊 广义回归神经网络 区域火灾数据 预测
在线阅读 下载PDF
基于广义椭球基函数模糊神经网络的油轮转向动态响应模型(英文) 被引量:1
12
作者 王宁 王丹 李铁山 《中国科学技术大学学报》 CAS CSCD 北大核心 2012年第9期705-713,共9页
基于广义椭球基函数模糊神经网络(GEBF-FNN)算法,提出一种新颖的油轮转向动态响应模型.通过事先建立好的一组油轮操纵非线性微分方程获得训练数据,GEBF-FNN算法用于在线辨识Nomoto型油轮转向响应模型的参数K和T.具体地,GEBF-FNN模型从... 基于广义椭球基函数模糊神经网络(GEBF-FNN)算法,提出一种新颖的油轮转向动态响应模型.通过事先建立好的一组油轮操纵非线性微分方程获得训练数据,GEBF-FNN算法用于在线辨识Nomoto型油轮转向响应模型的参数K和T.具体地,GEBF-FNN模型从没有任何模糊规则开始,基于规则生长准则和参数估计方法,在线生成模糊规则,从而学习出由一组模糊规则构成的具有高精度和精简系统结构的油轮转向动态响应模型.为验证该动态响应模型的有效性,针对典型的Z形操纵进行仿真研究,并进行广泛的比较研究,仿真结果显示基于GEBF-FNN算法的油轮动态响应模型具有理想的逼近和预测性能. 展开更多
关键词 油轮转向 响应模型 模糊神经网络 广义椭球基函数
在线阅读 下载PDF
广义动态模糊神经网络焊接接头力学性能预测 被引量:1
13
作者 张永志 董俊慧 侯继军 《焊接学报》 EI CAS CSCD 北大核心 2017年第8期37-40,共4页
建立广义动态模糊神经网络模型,用来预测焊接接头力学性能.模型结构不再是建模时预设,而是在对逐个样本的学习过程中动态自适应调整.引入椭圆基函数扩大函数的接收域,利用系统误差和模糊规则ε完备性作为模糊规则增加的依据,并将模糊规... 建立广义动态模糊神经网络模型,用来预测焊接接头力学性能.模型结构不再是建模时预设,而是在对逐个样本的学习过程中动态自适应调整.引入椭圆基函数扩大函数的接收域,利用系统误差和模糊规则ε完备性作为模糊规则增加的依据,并将模糊规则ε完备性作为径向基单元的宽度确定准则.以误差减少率评价模糊规则的重要性,并以此为依据对模型的模糊规则进行修剪.采用三种不同厚度、不同工艺TC4钛合金TIG焊接试验,获得17组训练样本和5组仿真样本数据,建模并仿真.结果表明,该模型能够对焊接接头力学性能进行较为准确的预测. 展开更多
关键词 广义动态模糊神经网络 预测 焊接 建模 力学性能
在线阅读 下载PDF
基于广义动态模糊神经网络的电液伺服系统控制 被引量:4
14
作者 王力 王永超 金勇 《机床与液压》 北大核心 2011年第15期27-29,共3页
针对电液伺服系统这一复杂的非线性系统,提出一种广义动态模糊神经网络学习算法,并设计控制器。该算法以模糊ε-完备性作为高斯函数宽度的确定准则;同时对模糊规则和输入变量的重要性作出评价,并以此来调整每个输入变量和模糊规则。使用... 针对电液伺服系统这一复杂的非线性系统,提出一种广义动态模糊神经网络学习算法,并设计控制器。该算法以模糊ε-完备性作为高斯函数宽度的确定准则;同时对模糊规则和输入变量的重要性作出评价,并以此来调整每个输入变量和模糊规则。使用AMESim软件搭建了系统的模型,并利用AMESim的接口技术实现了与Simulink的联合仿真。仿真结果表明,该控制器具有较强的鲁棒性。 展开更多
关键词 电液伺服系统 广义动态模糊神经网络 联合仿真
在线阅读 下载PDF
一种递归模糊神经网络的广义预测控制方法 被引量:2
15
作者 李国勇 刘鹏 《太原理工大学学报》 CAS 北大核心 2012年第1期11-15,共5页
提出了一种递归模糊神经网络(RFNN),通过加入向量调节层,提高了网络对输入信息的处理能力。基于所设计的递归模糊神经网络,建立非线性系统的离散数学多步模糊预测模型,根据这一模型对系统的输出进行预测,然后利用预测控制算法得到相应... 提出了一种递归模糊神经网络(RFNN),通过加入向量调节层,提高了网络对输入信息的处理能力。基于所设计的递归模糊神经网络,建立非线性系统的离散数学多步模糊预测模型,根据这一模型对系统的输出进行预测,然后利用预测控制算法得到相应的预测控制规律。仿真结果表明该方法具有较高的控制精度以及一定的抗干扰能力。 展开更多
关键词 模糊神经网络 向量调节 广义预测控制 非线性
在线阅读 下载PDF
基于广义回归神经网络无参考模糊图像质量评价 被引量:5
16
作者 殷莹 《激光与红外》 CAS CSCD 北大核心 2013年第4期466-470,共5页
提出一种基于广义回归神经网络的无参考模糊图像质量评价方法。该方法首先通过相位一致变换生成待评测图像的相位一致图像,然后利用灰度共生矩阵计算相位一致图像的信息熵、能量、对比度、相关性和同质性5个特征,最后利用广义回归神经... 提出一种基于广义回归神经网络的无参考模糊图像质量评价方法。该方法首先通过相位一致变换生成待评测图像的相位一致图像,然后利用灰度共生矩阵计算相位一致图像的信息熵、能量、对比度、相关性和同质性5个特征,最后利用广义回归神经网络模型训练学习,预测得到无参考模糊图像质量得分。在3个公开数据库模糊图像上的实验结果表明,新方法预测得分与主观得分有较好的一致性,更加符合人类视觉特性。 展开更多
关键词 模糊图像质量评价 广义回归神经网络 相位一致 灰度共生矩阵
在线阅读 下载PDF
广义随机模糊神经网络及在随机混沌时间序列预测中的应用
17
作者 张静 《噪声与振动控制》 CSCD 北大核心 2006年第2期11-13,共3页
针对随机模糊神经网络缺乏自适应性,引入广义高斯函数和广义随机模糊神经网络,使系统中隶属函数具有自适应性;并对参数进行遗传退火算法优化,使系统具有最佳结构和参数。以随机混沌时间序列为例进行仿真预测分析,结果表明广义随机模糊... 针对随机模糊神经网络缺乏自适应性,引入广义高斯函数和广义随机模糊神经网络,使系统中隶属函数具有自适应性;并对参数进行遗传退火算法优化,使系统具有最佳结构和参数。以随机混沌时间序列为例进行仿真预测分析,结果表明广义随机模糊神经网络能够更好地预测原随机混沌时间序列,精度良好,具有抗噪声干扰能力。 展开更多
关键词 声学 广义随机模糊神经网络 随机混沌时间序列 预测 遗传退火算法
在线阅读 下载PDF
广义动态模糊神经网络用于股市预测 被引量:2
18
作者 于海蛟 师军 卢照 《计算机应用与软件》 CSCD 2010年第8期238-240,297,共4页
提出一种用广义动态模糊神经网络预测股票价格的方法,网络结构可随模糊规则在学习过程中逐渐增长而自动调节,以达到预测最优化。通过选用实用的技术参数指标作为网络的输入变量对上证指数的收盘价进行预测,取得了较为理想的效果。
关键词 广义动态模糊神经网络 上证指数 预测 技术指标
在线阅读 下载PDF
基于广义二型模糊神经网络的移动机器人轨迹跟踪控制 被引量:4
19
作者 周俊 赵涛 《计算机应用与软件》 北大核心 2023年第4期68-74,79,共8页
针对轮式移动机器人的轨迹跟踪问题,提出一种广义二型模糊神经网络控制方法。模糊控制可以弥补机器人动态特性中的非线性和不确定性因素,而广义二型模糊系统能更有效地处理外界干扰和参数扰动等不确定性,广义二型模糊神经网络系统结合... 针对轮式移动机器人的轨迹跟踪问题,提出一种广义二型模糊神经网络控制方法。模糊控制可以弥补机器人动态特性中的非线性和不确定性因素,而广义二型模糊系统能更有效地处理外界干扰和参数扰动等不确定性,广义二型模糊神经网络系统结合了神经网络强大的非线性拟合能力和自学习能力,能够更有效地对规则库中可能存在的不确定性进行建模。它可以进一步提高控制精度,达到跟踪的目的。仿真结果表明,与PID控制器、模糊控制器和一型模糊神经网络控制器相比,该方法能更好地跟踪轮式移动机器人的运动轨迹且拥有更好的抗干扰能力。 展开更多
关键词 广义二型模糊控制 神经网络 轨迹跟踪
在线阅读 下载PDF
基于广义动态模糊神经网络的聚乙烯分子量分布软测量 被引量:5
20
作者 安许锋 田洲 钱锋 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第4期529-534,共6页
分子量分布(MWD)是聚合物的重要质量指标,但由于实时检测的困难,MWD的预测成为聚合过程先进控制和优化面临的重要挑战。为解决聚乙烯分子量分布预测的实时性和精度问题,本文结合过程信息和反应机理建立了分子量分布预测的混合模型。首... 分子量分布(MWD)是聚合物的重要质量指标,但由于实时检测的困难,MWD的预测成为聚合过程先进控制和优化面临的重要挑战。为解决聚乙烯分子量分布预测的实时性和精度问题,本文结合过程信息和反应机理建立了分子量分布预测的混合模型。首先通过机理分析,在假设不同催化剂活性位个数的情况下拟合MWD,通过误差分析获得合理的催化剂个数及分布函数参数,同时操作条件与分布函数参数之间的关系通过广义动态模糊神经网络(GDFNN)描述。在GDFNN中,利用K-means初始化其网络结构,训练过程中,充分利用历史数据和新息决定是否增加新规则,减少冗余规则的频繁生成,并通过分级学习机制,前期提高全局学习率,后期提高局部学习率。最后通过实际工业数据的仿真实验证明了该混合模型的有效性。 展开更多
关键词 分子量分布 广义动态模糊神经网络 混合模型 分布函数参数
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部