期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
自适应目标新生δ广义标签多伯努利滤波算法 被引量:6
1
作者 李翠芸 陈东伟 石仁政 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2019年第2期12-16,共5页
针对传统广义标签多伯努利滤波算法因需已知新生目标状态分布信息而导致在实际场景中估计精度下降的问题,提出一种新的自适应目标新生δ广义标签多伯努利算法。该算法以广义标签多伯努利滤波器为基础,利用上一时刻接收到的量测信息反推... 针对传统广义标签多伯努利滤波算法因需已知新生目标状态分布信息而导致在实际场景中估计精度下降的问题,提出一种新的自适应目标新生δ广义标签多伯努利算法。该算法以广义标签多伯努利滤波器为基础,利用上一时刻接收到的量测信息反推当前时刻新生目标的存活概率和状态信息,并给出其标签伯努利随机集的参数表示。仿真结果表明,所提算法对于未知新生目标先验信息的复杂运动场景具有较强的多目标跟踪鲁棒性,且跟踪精度以及时间耗费均优于传统广义标签多伯努利滤波器。 展开更多
关键词 多目标跟踪 随机有限集 δ广义标签多伯努利 自适应目标新生
在线阅读 下载PDF
箱粒子广义标签多伯努利滤波的目标跟踪算法 被引量:9
2
作者 苗雨 宋骊平 姬红兵 《西安交通大学学报》 EI CAS CSCD 北大核心 2017年第10期107-112,共6页
针对序列蒙特卡罗广义标签多伯努利滤波(SMC-GLMB)算法计算效率低、实时性差的问题,提出了箱粒子广义标签多伯努利滤波的目标跟踪(Box-GLMB)算法。该算法使用带标签的随机有限集描述多目标的状态,包括目标的位置和速度,并且对每个目标... 针对序列蒙特卡罗广义标签多伯努利滤波(SMC-GLMB)算法计算效率低、实时性差的问题,提出了箱粒子广义标签多伯努利滤波的目标跟踪(Box-GLMB)算法。该算法使用带标签的随机有限集描述多目标的状态,包括目标的位置和速度,并且对每个目标用互不相同的标签进行区分;然后利用箱粒子滤波算法近似单目标状态的概率密度,即用一组带权值的均匀分布拟合单目标状态概率密度;最后通过广义标签多伯努利滤波对多目标状态的概率密度进行预测与更新,从多目标状态后验概率密度中估计单目标的位置与速度,根据目标的标签可以实现航迹跟踪。BoxGLMB算法结合了箱粒子滤波与GLMB算法的优势,能够跟踪目标航迹,同时提高计算效率。仿真结果表明,Box-GLMB算法可以有效估计目标状态以及跟踪目标航迹,相比于SMC-GLMB算法,计算效率提升了62%。 展开更多
关键词 目标跟踪 随机有限集 广义标签多伯努利滤波 箱粒子滤波
在线阅读 下载PDF
闪烁噪声统计特性未知情况下的鲁棒广义标签多伯努利滤波器 被引量:3
3
作者 侯利明 连峰 +1 位作者 谭顺成 徐从安 《电子学报》 EI CAS CSCD 北大核心 2021年第7期1346-1353,共8页
为了解决闪烁噪声统计特性未知情况下的多目标跟踪问题,提出一种鲁棒广义标签多伯努利(Generalized Labeled Multi⁃Bernoulli,GLMB)滤波器.该滤波器采用均值未知且时变的多维Student’s t分布对统计特性未知的闪烁噪声进行建模.它放宽... 为了解决闪烁噪声统计特性未知情况下的多目标跟踪问题,提出一种鲁棒广义标签多伯努利(Generalized Labeled Multi⁃Bernoulli,GLMB)滤波器.该滤波器采用均值未知且时变的多维Student’s t分布对统计特性未知的闪烁噪声进行建模.它放宽了闪烁噪声均值为零的限制性假设,可以自适应地处理闪烁噪声均值未知且时变条件下的多目标跟踪问题.本文在GLMB滤波框架下,利用变分贝叶斯方法对增广状态中的参数进行变分迭代,并通过最小化Kullback⁃Leibler散度得到边缘似然函数的近似解.仿真结果表明,在闪烁噪声统计特性未知的情况下,所提滤波器能有效地对多目标进行跟踪. 展开更多
关键词 随机有限集 多目标跟踪 闪烁噪声 统计特性未知 变分贝叶斯推断 广义标签多伯努利滤波器
在线阅读 下载PDF
非线性量测下的机动多目标跟踪
4
作者 国强 任海宁 +1 位作者 周凯 戚连刚 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2024年第5期64-73,共10页
为了解决非线性量测下机动多目标跟踪实时性差、跟踪误差大以及对杂波变化鲁棒性较差的问题,基于随机有限集理论,提出了一种采用量测转换和模糊算法改进的多模型δ-广义标签多伯努利滤波器。首先,推导了交互多模型的δ-GLMB滤波器,通过... 为了解决非线性量测下机动多目标跟踪实时性差、跟踪误差大以及对杂波变化鲁棒性较差的问题,基于随机有限集理论,提出了一种采用量测转换和模糊算法改进的多模型δ-广义标签多伯努利滤波器。首先,推导了交互多模型的δ-GLMB滤波器,通过去相关无偏量测转换实现位置量测从极坐标系到笛卡尔坐标系的无偏转换,并通过预测值去除量测误差和其协方差的相关性造成的滤波估计偏差,实现了非线性场景下的机动多目标跟踪;然后,通过航迹和量测的关联新息以及目标的机动约束构建联合波门,降低了杂波量测的数量;最后引入改进的模糊算法,以目标的模型后验概率为输入,根据模型的分离程度自适应调节运动模型的过程噪声,增加滤波精度。研究结果表明:在杂波环境下,通过与CKF-JMS-δ-GLMB、CKF-IMM-δ-GLMB等非线性多模型滤波器对比,所提算法计算时间较小,且跟踪精度更高,鲁棒性强。所提算法避免了传统的非线性处理方式计算量较大的问题,并且具有较好的杂波抑制特性,提升了非线性量测下机动多目标跟踪的性能。 展开更多
关键词 非线性量测 机动多目标 δ-广义标签多伯努利滤波器 量测转换 交互多模型 模糊算法
在线阅读 下载PDF
基于GLMB滤波的复杂场景下红外弱小目标自适应跟踪算法
5
作者 蔡如华 周健斌 +1 位作者 吴孙勇 郑翔飞 《红外技术》 CSCD 北大核心 2024年第7期743-753,共11页
针对红外弱小目标在复杂场景下受到漏检和杂波影响,导致跟踪不连续甚至失效的问题,本文提出一种红外弱小目标自适应跟踪算法。在预处理阶段,为了减少不必要的计算,首先定义一种衡量图像复杂度的算法。然后该算法通过计算红外图像多个特... 针对红外弱小目标在复杂场景下受到漏检和杂波影响,导致跟踪不连续甚至失效的问题,本文提出一种红外弱小目标自适应跟踪算法。在预处理阶段,为了减少不必要的计算,首先定义一种衡量图像复杂度的算法。然后该算法通过计算红外图像多个特征得到场景复杂度来确认场景类型,再根据场景类型选取对应的检测算法提取目标候选位置、灰度以及局部直方图等特征建立对应的量测模型与似然函数。在目标跟踪阶段,为了自适应地匹配广义标签多伯努利(Generalized Labeled Multi-Bernoulli,GLMB)滤波器的滤波参数,在GLMB的基础上提出一种适应视频图像的新生算法进行航迹起始;针对红外图像序列目标检测概率未知的情况,将未知检测概率的基数化概率假设密度(Cardinality Probability Hypothesis Density,CPHD)滤波器集成到GLMB中实时估计目标检测概率以提升跟踪精度。仿真结果表明,所提出算法能有效地排除量测漏检和虚警的干扰,跟踪不同红外复杂场景下的弱小目标。 展开更多
关键词 红外弱小目标 广义标签多伯努利滤波 自适应跟踪 复杂场景
在线阅读 下载PDF
基于未知探测概率的RAG-GLMB多目标跟踪算法
6
作者 邓宇浩 李琳 《中国惯性技术学报》 CSCD 北大核心 2024年第12期1191-1196,共6页
针对未知探测概率的广义标签多伯努利(GLMB)滤波器性能下降问题,提出一种鲁棒自适应门限的广义标签多伯努利算法(RAG-GLMB)。通过采用自适应门限策略进行目标预测状态集与量测数据集的关联,判定目标探测状态,将未知探测概率转化为目标... 针对未知探测概率的广义标签多伯努利(GLMB)滤波器性能下降问题,提出一种鲁棒自适应门限的广义标签多伯努利算法(RAG-GLMB)。通过采用自适应门限策略进行目标预测状态集与量测数据集的关联,判定目标探测状态,将未知探测概率转化为目标存活问题;并设计比例因子提高实际探测概率较低时自适应门限方法鲁棒性。仿真结果表明,未知探测概率下,所提算法目标数估计正确率较传统GLMB算法高20.5%,最优子模式分配(OSPA)距离少7 m,且在量测数据部分丢失和强杂波背景下具有较好的鲁棒性。 展开更多
关键词 多目标跟踪 广义标签多伯努利滤波器 自适应门限 未知探测概率
在线阅读 下载PDF
一步数据关联GLMB扩展目标跟踪算法 被引量:6
7
作者 李翠芸 李洋 +1 位作者 姬红兵 石仁政 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2020年第5期137-143,共7页
针对传统的扩展目标跟踪算法在目标近邻场景中由于量测不可分导致跟踪性能下降的问题,提出了一种基于一步数据关联的扩展目标跟踪算法。该算法用乘性噪声模型对目标进行建模,将联合概率数据关联理论中的一步数据关联处理方法与广义标签... 针对传统的扩展目标跟踪算法在目标近邻场景中由于量测不可分导致跟踪性能下降的问题,提出了一种基于一步数据关联的扩展目标跟踪算法。该算法用乘性噪声模型对目标进行建模,将联合概率数据关联理论中的一步数据关联处理方法与广义标签多伯努利滤波器相结合,实现在量测难以划分情况下的多扩展目标跟踪。仿真实验表明,该算法能够在交叉、近邻场景中实现对目标的有效跟踪,并且在估计精度方面优于传统的基于量测划分的扩展目标跟踪算法。 展开更多
关键词 扩展目标跟踪 乘性噪声模型 二阶扩展卡尔曼滤波算法 数据关联 广义标签多伯努利滤波器
在线阅读 下载PDF
多普勒雷达下的机动多目标跟踪算法 被引量:1
8
作者 国强 卢宇翀 +1 位作者 戚连刚 KALIUZHNY Mykola 《西安交通大学学报》 EI CAS CSCD 北大核心 2023年第9期174-184,共11页
针对多普勒雷达在跟踪机动多目标过程中由于多普勒盲区(DBZ)造成量测丢失、对跟踪器性能产生严重影响这一问题,提出将最小可检测速度(MDV)带入到交互多模型广义标签多伯努利(IMM-GLMB)滤波器中,利用MDV信息抑制DBZ对跟踪器的影响。首先... 针对多普勒雷达在跟踪机动多目标过程中由于多普勒盲区(DBZ)造成量测丢失、对跟踪器性能产生严重影响这一问题,提出将最小可检测速度(MDV)带入到交互多模型广义标签多伯努利(IMM-GLMB)滤波器中,利用MDV信息抑制DBZ对跟踪器的影响。首先,通过采用基于马尔科夫分支合并策略的交互多模型(IMM)算法,解决单一运动模型的情况下无法跟踪机动目标的问题;其次,将并入MDV信息的检测概率模型带入IMM-GLMB滤波器的更新方程中,并给出了详细实现过程,利用MDV和多普勒信息来改善跟踪器性能;最后,面对目前算法需要固定航迹起始位置才可以进行跟踪的问题,提出了一种适用于广义标签多伯努利(GLMB)滤波器的自适应航迹起始算法。仿真结果表明,所提出的滤波算法在不同宽度的DBZ下都具有更好的性能表现,尤其在DBZ较小时,对滤波器的性能基本没有影响,并且所提算法在单步运行时间上有34%的提升。 展开更多
关键词 机动多目标跟踪 多普勒盲区 航迹起始 广义标签多伯努利
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部