期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
CEEMD与广义形态差值滤波结合的故障诊断方法研究 被引量:6
1
作者 黄刚劲 范玉刚 黄国勇 《华中师范大学学报(自然科学版)》 CAS 北大核心 2017年第3期304-308,316,共6页
为了提取滚动轴承早期微弱故障特征信息,提出一种互补总体平均经验模态分解(Complementary Ensemble Empirical Mode Decomposition,CEEMD)与广义形态差值滤波结合的故障诊断方法.该方法首先对振动信号进行CEEMD分解成若干不同尺度的本... 为了提取滚动轴承早期微弱故障特征信息,提出一种互补总体平均经验模态分解(Complementary Ensemble Empirical Mode Decomposition,CEEMD)与广义形态差值滤波结合的故障诊断方法.该方法首先对振动信号进行CEEMD分解成若干不同尺度的本征模函数(Intrinsic Mode Function,IMF)分量,利用相关系数-峭度准则来选取故障信息丰富的IMF分量信号,并对其进行重构;然后采用广义形态差值滤波器对重构后的信号进行滤波,以滤除噪声干扰;最后利用Teager能量算子(Teager-Kaiser Energy Operator,TKEO)对去噪后的振动信号进行分析,提取振动信号的故障特征.滚动轴承振动信号分析试验结果证明了本文方法的有效性. 展开更多
关键词 CEEMD 广义形态差值滤波 TKEO 滚动轴承 故障诊断
在线阅读 下载PDF
广义形态差值滤波与AN降维在故障诊断中的应用 被引量:5
2
作者 肖洁 黎敬涛 《电子测量与仪器学报》 CSCD 北大核心 2020年第3期74-80,共7页
由于轴承与设备其他内部构件之间存在强关联耦合关系,导致其振动信号与设备状态存在非线性关系;且信号单一特征难以全面描述设备状态,而多特征虽然包含较多状态信息,但高维特征所产生的信号冗余问题,易导致模型分类精度的下降.因此,提... 由于轴承与设备其他内部构件之间存在强关联耦合关系,导致其振动信号与设备状态存在非线性关系;且信号单一特征难以全面描述设备状态,而多特征虽然包含较多状态信息,但高维特征所产生的信号冗余问题,易导致模型分类精度的下降.因此,提出一种基于广义形态差值滤波(GDIF)与自编码网络(AN)的滚动轴承故障诊断方法.该方法利用广义形态差值滤波对振动信号进行降噪处理,并通过极大似然估计(MLE)与AN从信号的高维特征中获取低维本质流形,缓解高维特征存在的维数灾难问题;最后,建立极限学习机(ELM)故障诊断模型,对轴承故障类型进行识别。轴承试验结果表明,该方法能够有效对信号进行降噪;通过AN对特征进行维数约简,能够使ELM模型分类精度达到98.04%。 展开更多
关键词 广义形态差值滤波 AN 维数约简 极限学习机 故障诊断
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部