Some explicit and exact traveling wave solutions of a class of symmetric regularized long wave equations with dissipative term are obtained by a kind of combination of direct method with ansatze method. These solution...Some explicit and exact traveling wave solutions of a class of symmetric regularized long wave equations with dissipative term are obtained by a kind of combination of direct method with ansatze method. These solutions include solitary wave solutions, singular traveling wave solutions. The corresponding solutions to the damped Boussinesq equation and the generalized Fisher equation are obtained as a corollary.展开更多
为了求出对称正则长波(symmetric regularized long wave,SRLW)方程的数值解,构造了一种新的高效紧致有限差分格式.采用经典的Crank-Nicolson(C-N)格式和外推技术对时间方向一阶导数进行离散化,使用四阶Padé方法和逆紧致算子分别...为了求出对称正则长波(symmetric regularized long wave,SRLW)方程的数值解,构造了一种新的高效紧致有限差分格式.采用经典的Crank-Nicolson(C-N)格式和外推技术对时间方向一阶导数进行离散化,使用四阶Padé方法和逆紧致算子分别对空间方向一阶和二阶导数进行离散化,使得构造的格式具有线性、非耦合和紧致的特点,极大地提高了求解效率.此外,还对新格式进行了守恒律、先验估计、稳定性、收敛性分析,证明了其在时间上达到二阶、在空间上达到四阶收敛精度.最后,通过一个数值算例验证了理论的正确性和格式的高效性.展开更多
文摘Some explicit and exact traveling wave solutions of a class of symmetric regularized long wave equations with dissipative term are obtained by a kind of combination of direct method with ansatze method. These solutions include solitary wave solutions, singular traveling wave solutions. The corresponding solutions to the damped Boussinesq equation and the generalized Fisher equation are obtained as a corollary.
文摘为了求出对称正则长波(symmetric regularized long wave,SRLW)方程的数值解,构造了一种新的高效紧致有限差分格式.采用经典的Crank-Nicolson(C-N)格式和外推技术对时间方向一阶导数进行离散化,使用四阶Padé方法和逆紧致算子分别对空间方向一阶和二阶导数进行离散化,使得构造的格式具有线性、非耦合和紧致的特点,极大地提高了求解效率.此外,还对新格式进行了守恒律、先验估计、稳定性、收敛性分析,证明了其在时间上达到二阶、在空间上达到四阶收敛精度.最后,通过一个数值算例验证了理论的正确性和格式的高效性.