期刊文献+
共找到122篇文章
< 1 2 7 >
每页显示 20 50 100
综合半参数变系数和GRNN神经网络的对流层延迟模型
1
作者 潘雄 张思莹 +3 位作者 李涛 黄伟凯 金丽宏 张红星 《地球物理学报》 北大核心 2025年第1期54-65,共12页
对流层延迟是卫星导航定位的主要误差源之一,精准地预测对流层延迟对于提高全球导航卫星系统的定位精度至关重要.本文将半参数变系数模型(Semiparametric Varying Coefficient,Semi-VC)引入到对流层延迟建模中,构建一种综合半参数变系... 对流层延迟是卫星导航定位的主要误差源之一,精准地预测对流层延迟对于提高全球导航卫星系统的定位精度至关重要.本文将半参数变系数模型(Semiparametric Varying Coefficient,Semi-VC)引入到对流层延迟建模中,构建一种综合半参数变系数与神经网络的新型经验对流层模型.首先,将频谱分析提取的主周期信号作为参数分量,将剩余周期信号和其他误差归入到非参数分量,建立半参数对流层天顶延迟模型(Semiparametric tropospheric zenith delay model,Semi);其次,为了减弱核函数和窗宽参数选择对估计值精度的影响,利用泰勒展式将参数分量展开到一次项,将窗宽参数与参数解算综合考虑,扩充为半参数变系数模型,综合核估计和最小二乘法,利用三步估计方法得到了参数分量和非参数分量的估计值及观测值的拟合残差;然后,引入广义回归神经网络模型(Generalized Regression Neural Network,GRNN)对拟合残差进行补偿建模,利用贝叶斯优化算法(Bayesian Optimization Algorithm,BOA)进行超参数选择,进一步提升混合模型对ZTD(Zenith Tropospheric Delay)的估计精度.最后,利用陆态网络2020至2022年的210个GNSS(Global Navigation Satellite System)测站的实测数据,对本文提出的半参数变系数与广义回归神经网络组合模型(Semiparametric Varying Coefficient-GRNN,Semi-VC-GRNN)与常用模型从系统误差分离和时空分布特性方面进行了对比分析.结果表明,Semi-VC-GRNN模型在2022年210个测站的测试中平均RMSE(Root Mean Square Error)和平均Bias分别为16.8 mm和0.4 mm,平均RMSE相较于5°分辨率和1°分辨率下的GPT3模型分别提升51.25%和50.07%. 展开更多
关键词 天顶对流层延迟 半参数变系数模型 广义回归神经网络模型 陆态网络
在线阅读 下载PDF
融合GRNN神经网络的ZHD模型构建及其在中国区域PWV反演中的应用
2
作者 吴昂道 唐旭 张骋 《测绘通报》 北大核心 2025年第10期87-93,共7页
针对Saastamoinen模型依赖地表实测气压数据而多数GNSS站点缺乏气象仪导致对流层干延迟(ZHD)计算受限的问题,本文提出了基于广义回归神经网络(GRNN)的改进方法。通过融合掩星与探空站数据构建训练集,建立GRNN-ZHD预测模型,并结合中国地... 针对Saastamoinen模型依赖地表实测气压数据而多数GNSS站点缺乏气象仪导致对流层干延迟(ZHD)计算受限的问题,本文提出了基于广义回归神经网络(GRNN)的改进方法。通过融合掩星与探空站数据构建训练集,建立GRNN-ZHD预测模型,并结合中国地壳运动观测网络(CMONOC)的GNSS观测数据解算对流层总延迟(ZTD),构建反演大气可降水量(PWV)新模型。结果表明:在ZHD反演精度方面,GRNN模型的平均RMSE为15.23 mm,较GPT3模型(28.64 mm)提升约46.8%;在PWV反演方面,GRNN模型平均RMSE为5.17 mm,优于GPT3模型的10.76 mm(精度提升51.9%)。在20个验证站点中,GRNN模型在15个站点的PWV反演偏差低于7 mm,而GPT3模型仅有3个。 展开更多
关键词 Saastamoinen模型 对流层干延迟 广义回归神经网络 大气可降水量
在线阅读 下载PDF
改进的MVO-GRNN神经网络岩爆预测模型研究 被引量:7
3
作者 侯克鹏 包广拓 孙华芬 《安全与环境学报》 CAS CSCD 北大核心 2024年第3期923-932,共10页
准确预测岩爆烈度等级能有效指导岩爆灾害的防控。根据影响岩爆发生及烈度等级的3个因素构建岩爆评价指标体系,提出一种基于改进多元宇宙算法(Improved Multi-Verse Optimizer,IMVO)优化广义回归神经网络(General Regression Neural Net... 准确预测岩爆烈度等级能有效指导岩爆灾害的防控。根据影响岩爆发生及烈度等级的3个因素构建岩爆评价指标体系,提出一种基于改进多元宇宙算法(Improved Multi-Verse Optimizer,IMVO)优化广义回归神经网络(General Regression Neural Network,GRNN)的岩爆预测模型。在普通多元宇宙算法(MVO)的基础上,运用自适应平衡机制调节MVO算法中的虫洞存在概率(V_(WEP))和旅行距离率(V_(TDR))两个重要参数来改进该算法;再运用改进的多元宇宙算法优化广义回归神经网络的光滑度,通过训练数据优选出最佳光滑因子σ,得到IMVO-GRNN神经网络岩爆烈度预测模型;最后结合工程实例验证模型的性能。研究表明,该模型相比传统模型寻优能力更强,精度更高,为岩爆预测提供了一种新的思路。 展开更多
关键词 安全工程 岩爆预测 多元宇宙算法 广义回归神经网络(grnn) 虫洞存在概率 旅行距离率
在线阅读 下载PDF
广义回归神经网络(GRNN)在AMT挡位判别中的应用 被引量:8
4
作者 杨小辉 徐颖强 +2 位作者 李世杰 王耀锋 张玉同 《机械设计与制造》 北大核心 2009年第5期72-74,共3页
通过分析传统方法研究AMT换档规律存在的问题和神经网络在不能获得精确数学模型的非线性系统中能达到最优控制的特性以及在线学习的能力等,提出基于广义回归神经网络(GRNN)进行AMT的换档规律的研究,并针对某4档轿车机械自动变速器,建立... 通过分析传统方法研究AMT换档规律存在的问题和神经网络在不能获得精确数学模型的非线性系统中能达到最优控制的特性以及在线学习的能力等,提出基于广义回归神经网络(GRNN)进行AMT的换档规律的研究,并针对某4档轿车机械自动变速器,建立该车自动变速两个参数(车速、油门开度)神经网络控制模型,运用Matlab软件进行换档过程的仿真分析。研究结果表明:利用GRNN研究AMT的换档规律过程简单、适应性强等,能够正确有效地进行车辆档位判别。 展开更多
关键词 广义回归神经网络(grnn) 电控机械式自动变速器(AMT) 换挡规律 仿真
在线阅读 下载PDF
基于广义回归神经网络的船舶交通量预测模型 被引量:13
5
作者 刘敬贤 刘振东 周锋 《中国航海》 CSCD 北大核心 2011年第2期74-77,85,共5页
船舶交通量受多种环境与社会因素的影响,使得船舶交通量预测存在复杂性与非线性的特点。在分析现有预测模型和方法不足的基础上,介绍了广义回归神经网络GRNN的基本原理与拓扑结构。不同类型船舶受各类因素影响的程度不同,根据天津港VTS(... 船舶交通量受多种环境与社会因素的影响,使得船舶交通量预测存在复杂性与非线性的特点。在分析现有预测模型和方法不足的基础上,介绍了广义回归神经网络GRNN的基本原理与拓扑结构。不同类型船舶受各类因素影响的程度不同,根据天津港VTS(Vessel Traffic Services)中心提供的船舶交通量数据,按船舶种类将船舶交通量分为六类,利用GRNN神经网络分别进行预测。预测结果表明GRNN神经网络具有很强的非线性拟合能力,有效解决了天津港船舶交通量预测中的小样本问题,提高了整个预测系统的精度与稳定性。 展开更多
关键词 水路运输 船舶交通量 广义回归神经网络 小样本问题 组合预测模型
在线阅读 下载PDF
基于广义回归神经网络的磁流变减振器模型辨识 被引量:8
6
作者 王戡 郑玲 刘非 《汽车工程》 EI CSCD 北大核心 2013年第7期619-623,634,共6页
根据磁流变减振器的非线性特性,提出磁流变减振器广义回归神经网络(GRNN)模型辨识方法,利用台架试验获取的力学特性数据,建立磁流变减振器广义回归神经网络正、逆模型,并与反向传播神经网络(BPNN)模型进行比较。结果表明:通过合理选取... 根据磁流变减振器的非线性特性,提出磁流变减振器广义回归神经网络(GRNN)模型辨识方法,利用台架试验获取的力学特性数据,建立磁流变减振器广义回归神经网络正、逆模型,并与反向传播神经网络(BPNN)模型进行比较。结果表明:通过合理选取网络变量并优化光滑因子,GRNN模型能准确预测磁流变减振器的阻尼力和控制电流,其正、逆模型辨识精度优于BPNN模型。此外,GRNN还具有结构简单、快速收敛等特点,为磁流变减振器的准确建模与控制提供了重要手段。 展开更多
关键词 磁流变减振器 广义回归神经网络 反向传播神经网络 模型辨识
在线阅读 下载PDF
基于小波广义回归神经网络的粮食产量预测模型 被引量:7
7
作者 于平福 陆宇明 +4 位作者 韦莉萍 梁毅劼 苏晓波 孔令孜 兰宗宝 《湖北农业科学》 北大核心 2011年第10期2135-2137,共3页
将小波分析与广义回归神经网络(GRNN)相融合,构建了一种小波广义回归神经网络(WGRNN)模型。该模型应用于我国粮食总产量预测,其预测结果在精度上均优于单一的GRNN预测模型和GM(1,1)灰色预测模型,既具有神经网络非线性逼近能力和自学习... 将小波分析与广义回归神经网络(GRNN)相融合,构建了一种小波广义回归神经网络(WGRNN)模型。该模型应用于我国粮食总产量预测,其预测结果在精度上均优于单一的GRNN预测模型和GM(1,1)灰色预测模型,既具有神经网络非线性逼近能力和自学习能力的特性,又具有小波在时、频两域表征局部特征的功能,可为粮食产量预测的定量化和智能化提供一条新途径。 展开更多
关键词 粮食产量预测 小波分析 GM(1 1)模型 广义回归神经网络
在线阅读 下载PDF
多维项目反应理论补偿性模型参数估计:基于广义回归神经网络集合 被引量:7
8
作者 王鹏 孟维璇 +4 位作者 朱干成 张登浩 张利会 董一萱 司英栋 《心理学探新》 CSSCI 北大核心 2019年第3期244-249,共6页
运用广义回归神经网络(GRNN)方法对小样本多维项目反应理论(MIRT)补偿性模型的项目参数进行估计,尝试解决传统参数估计方法样本数量要求较大的问题。MIRT双参数Logistic补偿模型被设置为二级计分的二维模型。首先,模拟二维能力参数、项... 运用广义回归神经网络(GRNN)方法对小样本多维项目反应理论(MIRT)补偿性模型的项目参数进行估计,尝试解决传统参数估计方法样本数量要求较大的问题。MIRT双参数Logistic补偿模型被设置为二级计分的二维模型。首先,模拟二维能力参数、项目参数值与考生作答矩阵。其次,把通过主成分分析得到的前两个因子在每个题目上的载荷作为区分度的初始值以及题目通过率作为难度的初始值,这两个指标的初始值作为神经网络的输入。集成100个神经网络,其输出值的均值作为MIRT的项目参数估计值。最后,设置2×2种(能力相关水平:0.3和0.7;两种估计方法:GRNN和MCMC方法)实验处理,对GRNN和MCMC估计方法的返真性进行比较。结果表明,小样本的情况下,基于GRNN集成方法的参数估计结果优于MCMC方法。 展开更多
关键词 多维项目反应理论 补偿性模型 广义回归神经网络 参数估计
在线阅读 下载PDF
基于灰色广义回归神经网络模型的城市耕地面积预测 被引量:2
9
作者 严磊 刘好斌 +1 位作者 雷邦军 罗会亮 《地理与地理信息科学》 CSCD 北大核心 2012年第3期111-112,共2页
为提高原始数据呈非线性、随机性变化、样本量较小时城市耕地面积的预测精度,将无偏GM(1,1)模型与广义回归神经网络相结合,建立了基于灰色广义回归神经网络的城市耕地面积预测模型,并将其应用于平顶山市耕地面积预测,结果表明该模型精度... 为提高原始数据呈非线性、随机性变化、样本量较小时城市耕地面积的预测精度,将无偏GM(1,1)模型与广义回归神经网络相结合,建立了基于灰色广义回归神经网络的城市耕地面积预测模型,并将其应用于平顶山市耕地面积预测,结果表明该模型精度高,具有一定的应用价值。 展开更多
关键词 广义回归神经网络 无偏GM(1 1)模型 城市耕地面积预测
在线阅读 下载PDF
基于广义回归神经网络-柔性最大值分类模型的轴承故障诊断方法 被引量:9
10
作者 陈剑 吕伍佯 +1 位作者 庄学凯 陶善勇 《振动与冲击》 EI CSCD 北大核心 2020年第21期1-8,16,共9页
针对复杂工况下的滚动轴承振动信号,提出一种基于广义回归神经网络-柔性最大值分类模型的故障诊断分类方法,实现故障模式的识别。对滚动轴承振动信号进行变分模态分解,特征提取等预处理得到特征数据集,并将其划分为训练集,验证集和测试... 针对复杂工况下的滚动轴承振动信号,提出一种基于广义回归神经网络-柔性最大值分类模型的故障诊断分类方法,实现故障模式的识别。对滚动轴承振动信号进行变分模态分解,特征提取等预处理得到特征数据集,并将其划分为训练集,验证集和测试集;使用训练集和验证集训练广义回归神经网络-柔性最大值分类模型,同时引入灰狼优化算法优选该模型的关键参数平滑因子得到理想的分类模型;将训练好的模型应用测试集,输出故障识别结果;通过模拟试验采集不同工况下的轴承故障数据,进行方法有效性验证。结果表明该方法能在小样本训练集下实现对不同工况下的轴承故障的有效诊断,是一种适用于实际工况的故障诊断方法。 展开更多
关键词 故障诊断 滚动轴承 广义回归神经网络(grnn) 柔性最大值归一化 灰狼优化(GWO)
在线阅读 下载PDF
基于投资者行为参数的股票指数广义回归神经网络预测模型 被引量:1
11
作者 方勇 孙绍荣 《商业研究》 北大核心 2007年第11期14-18,共5页
在运用神经网络模型对股票价格进行短期预测时,一般的神经网络预测模型都是以价格的时间序列滞后作为输入变量,但是由于影响价格的因素错综复杂,很多因素无法准确测量,而且市场信息的噪音太大,因此预测效果往往不太理想,于是如何选择有... 在运用神经网络模型对股票价格进行短期预测时,一般的神经网络预测模型都是以价格的时间序列滞后作为输入变量,但是由于影响价格的因素错综复杂,很多因素无法准确测量,而且市场信息的噪音太大,因此预测效果往往不太理想,于是如何选择有效的输入变量就成为一个困扰这项研究的难题。 展开更多
关键词 行为参数 广义回归神经网络 股票指数 预测模型
在线阅读 下载PDF
基于广义回归神经网络的煤矿带式输送机模型预测控制 被引量:5
12
作者 任志玲 王梓行 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2023年第1期92-98,共7页
针对煤矿井下运输系统能耗大、生产成本高等问题,提出基于广义回归神经网络(GRNN)的带式输送机模型预测控制(MPC)策略。引入动态自适应权重和莱维飞行策略改进天牛须算法(BAS),并采用改进的天牛须算法对广义回归神经网络进行超参数寻优... 针对煤矿井下运输系统能耗大、生产成本高等问题,提出基于广义回归神经网络(GRNN)的带式输送机模型预测控制(MPC)策略。引入动态自适应权重和莱维飞行策略改进天牛须算法(BAS),并采用改进的天牛须算法对广义回归神经网络进行超参数寻优。建立了带式运输机模型,采用模型预测控制策略对带式输送机的运行进行优化与控制;优化过程采用了基于分时电价的控制策略。实验结果表明:与带式输送机传统的运行方式相比,所提出的控制策略不仅可以减少能源消耗,而且可以有效降低运行成本。 展开更多
关键词 带式输送机 广义回归神经网络 模型预测控制 天牛须搜索算法
在线阅读 下载PDF
基于改进广义回归神经网络的工作面低氧预测模型研究 被引量:12
13
作者 杨小彬 王逍遥 +1 位作者 周世禄 张子鹏 《矿业科学学报》 2019年第5期434-440,共7页
为了更有效合理地解决煤矿工作面中低氧问题,以神东某煤矿工作面监测数据为样本,考虑监测物理参数之间的相互影响关系,借助主成分分析法对广义回归神经网络(GRNN)进行改进,构建工作面氧气浓度预测模型,编制改进的GRNN模型程序。将预测... 为了更有效合理地解决煤矿工作面中低氧问题,以神东某煤矿工作面监测数据为样本,考虑监测物理参数之间的相互影响关系,借助主成分分析法对广义回归神经网络(GRNN)进行改进,构建工作面氧气浓度预测模型,编制改进的GRNN模型程序。将预测氧气浓度结果与实测数据对比,证明改进后的GRNN模型具有良好的拟合准确度和泛化能力,比改进前GRNN模型和BP神经网络模型更适合于煤矿工作面低氧问题的预测;利用改进的GRNN模型分析了工作面进、回风压力及进风温度对工作面及回风平巷氧浓度的影响,为矿井工作面低氧预测及工作面低氧防治技术提供了参考。 展开更多
关键词 低氧问题 广义回归神经网络 预测模型 泛化能力
在线阅读 下载PDF
基于灰色⁃广义回归神经网络模型的城市群交通运输能力预测 被引量:3
14
作者 王亦虹 李雅萱 +1 位作者 田平野 罗久刚 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2022年第8期8-16,共9页
城市群交通运输能力是构建国家综合立体交通网的战略基石。鉴于传统预测方法难以适应城市群交通运输能力影响因素众多且存在时变、耦合、不确定性强等特征,提出了一种灰色-广义回归神经网络的复合模型,以预测未来城市群交通运输能力。首... 城市群交通运输能力是构建国家综合立体交通网的战略基石。鉴于传统预测方法难以适应城市群交通运输能力影响因素众多且存在时变、耦合、不确定性强等特征,提出了一种灰色-广义回归神经网络的复合模型,以预测未来城市群交通运输能力。首先,选用LASSO算法筛选主要影响变量来降低数据复杂度,运用GM(1,1)模型弱化数据序列的随机性,预测影响变量时间序列的变化趋势,并填补数据缺失。然后,以20002019年京津冀城市群的数据集训练GRNN模型,根据GM(1,1)模型预测出的20202025年城市群交通运输能力影响因素,得出未来年份交通运输能力动态趋势。结果表明,复合预测模型精度优于传统方法,有效减少了小样本预测的不确定性。最后,结合预测结果分析了京津冀城市群核心区位城市的发展方向,为助力构建以城市群为重要抓手的新发展格局进行了前瞻性探讨。 展开更多
关键词 交通运输工程 城市群 灰色-广义回归神经网络模型 交通运输能力预测
在线阅读 下载PDF
差分自回归移动平均与广义回归神经网络组合模型在丙型肝炎月发病率中的预测应用 被引量:7
15
作者 刘红杨 刘洪庆 +1 位作者 李望晨 赵晶 《中国全科医学》 CAS 北大核心 2017年第2期182-186,共5页
目的探讨差分自回归移动平均(ARIMA)与广义回归神经网络(GRNN)组合模型在丙型肝炎月发病率中预测建模效果及应用前景,为疫情预测提供依据。方法 2015年5月—2016年5月,选取山东省疾病预防控制中心法定传染病直报系统2004—2014年丙型肝... 目的探讨差分自回归移动平均(ARIMA)与广义回归神经网络(GRNN)组合模型在丙型肝炎月发病率中预测建模效果及应用前景,为疫情预测提供依据。方法 2015年5月—2016年5月,选取山东省疾病预防控制中心法定传染病直报系统2004—2014年丙型肝炎月度发病率数据及山东省统计局发布的同期人口资料。对2004—2014年山东省丙型肝炎月发病率数据构建ARIMA模型,验证拟合精度并外推预测;将ARIMA模型拟合值作为GRNN模型的输入,实际值作为GRNN模型的输出,对样本进行训练和预测。比较单纯ARIMA模型和ARIMA-GRNN组合模型在丙型肝炎月发病率中的预测效果。结果 2004—2014年山东省丙型肝炎年均发病率为17.28/10万,并随着时间的推移呈上升趋势(Z=29.05,P<0.01)。ARIMA(1,2,1)模型预测2014年山东省丙型肝炎发病率与实际发病率基本一致,落在95%置信区间内,拟合效果较好。以ARIMA(1,2,1)模型拟合值作为GRNN模型的输入,丙型肝炎月发病率实际值作为GRNN模型的输出,取最优光滑因子0.12训练模型,ARIMA-GRNN组合模型预测的拟合值与实际值基本吻合。ARIMA模型和ARIMA-GRNN组合模型的平均误差率(MER)分别为16.87%、15.30%;决定系数(R^2)分别为0.53、0.60;平均绝对误差(MAE)分别为0.17、0.09;平均绝对百分误差(MAPE)分别为1.18、0.35。结论 ARIMA-GRNN组合模型对山东省丙型肝炎月发病率拟合及预测效果优于单纯ARIMA模型,具有较高的拟合精度,有较为广阔的应用前景,对于疫情预测工作有一定的实用性意义。 展开更多
关键词 丙型肝炎 发病率 预测 差分自回归移动平均模型 广义回归神经网络
在线阅读 下载PDF
基于广义回归神经网络模型模拟夏玉米蒸发蒸腾量 被引量:4
16
作者 冉梽乂 肖璐 +3 位作者 崔宁博 张志亮 蔡焕杰 张宝忠 《中国农村水利水电》 北大核心 2020年第2期93-99,104,共8页
作物蒸发蒸腾(ET)是农业水管理的关键技术参数,ET的准确估算对精准灌溉管理的实现及区域水资源配置均具有重要意义。为有效提高西北地区夏玉米ET预报精度,利用2011-2013年夏玉米作物指数与气象因子,基于广义回归神经网络(GRNN)构建西北... 作物蒸发蒸腾(ET)是农业水管理的关键技术参数,ET的准确估算对精准灌溉管理的实现及区域水资源配置均具有重要意义。为有效提高西北地区夏玉米ET预报精度,利用2011-2013年夏玉米作物指数与气象因子,基于广义回归神经网络(GRNN)构建西北地区夏玉米蒸发蒸腾量估算模型,并与Shuttleworth-Wallace(S-W)物理模型估算结果进行比较。结果表明,与大型蒸渗仪实测夏玉米不同时段ET相比,GRNN对夏玉米各生育期及全生育期ET的模拟效果更优。夏玉米全生育期ET最优模拟模型为M12(输入T、n、LAI),其MAE、NSE、R2、MRE、RRMSE和GPI排名分别为0.9252 mm/d、0.5500、0.5536、0.8368、0.4307和4;夏玉米出苗-抽雄期ET模拟最优模型为MⅠ-14(输入fc、H),其MAE、NSE、R2、MRE、RRMSE和GPI排名分别为0.8660 mm/d、0.3917、0.4252、0.3606、0.3990和2;抽雄-灌浆期最优模型为MⅡ-9(输入n、T、RH、LAI),其MAE、NSE、R2、MRE、RRMSE和GPI排名分别为0.5933 mm/d、0.7537、0.7601、0.2299、0.2840和1;灌浆-收获期最优模型MⅢ-11(输入RH、n、T),其相关参数分别为0.3258 mm/d、0.8570、0.8852、0.2112、0.2155和2;同时GRNN模型模拟值较S-W模型模拟值精确度明显更高。因此,基于广义回归神经网络的蒸发蒸腾量估算模型可用于较少输入参数下西北地区夏玉米不同生育期蒸发蒸腾量精准模拟。 展开更多
关键词 蒸发蒸腾量模拟 夏玉米 广义回归神经网络 Shuttleworth-Wallace模型
在线阅读 下载PDF
基于广义回归神经网络的风电机组性能预测模型及状态预警 被引量:25
17
作者 崔恺 许宜菲 +5 位作者 李雪松 杜亦航 李洋 马良玉 乔福宇 刘卫亮 《科学技术与工程》 北大核心 2020年第32期13220-13228,共9页
提出一种基于广义回归神经网络(generalized regression neural network,GRNN)的风力发电机组性能预测及异常状态预警方法。通过分析运行中影响风机主轴转速和发电功率的主要因素,确定了性能预测模型的输入和输出参数。运用监控与数据采... 提出一种基于广义回归神经网络(generalized regression neural network,GRNN)的风力发电机组性能预测及异常状态预警方法。通过分析运行中影响风机主轴转速和发电功率的主要因素,确定了性能预测模型的输入和输出参数。运用监控与数据采集(supervisory control and data acquisition,SCADA)系统的真实历史数据,采用广义回归神经网络(GRNN)建立了风电机组的性能预测模型,通过比较模型的预测精度对GRNN的平滑因子进行了优选。以此模型为基础,采用滑动数据窗方法实时计算风电机组转速和功率的残差评价指标,当评价指标连续超过预先设定的阈值时,则可判断风电机组状态异常。采用某实际风电机组若干历史故障发生前后的真实SCADA数据进行模拟,验证了方法的有效性。 展开更多
关键词 风电机组 性能预测模型 广义回归神经网络(grnn) 运行状态监测 参数预警
在线阅读 下载PDF
广义回归神经网络在煤灰熔点预测中的应用 被引量:31
18
作者 周昊 郑立刚 +1 位作者 樊建人 岑可法 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2004年第11期1479-1482,共4页
为了提高估算煤灰熔点的精度,采用广义回归神经网络(GRNN)对求解煤灰熔点问题进行了建模.将煤灰组分作为网络输入,煤灰软化温度作为网络输出,采用实验数据训练网络,训练完成的网络作为模型预测煤灰熔点.仿真结果表明,GRNN的预测值与实... 为了提高估算煤灰熔点的精度,采用广义回归神经网络(GRNN)对求解煤灰熔点问题进行了建模.将煤灰组分作为网络输入,煤灰软化温度作为网络输出,采用实验数据训练网络,训练完成的网络作为模型预测煤灰熔点.仿真结果表明,GRNN的预测值与实验值的最大相对误差为2.81%,而反向传播神经网络(BPNN)预测煤灰熔点的相对误差为3.62%.由于GRNN可应用于小样本问题的学习,GRNN比BPNN对煤灰熔点具有更好的预测和泛化能力.GRNN具有设计简单与收敛快的优点,并提高了实时处理与反映最新运行工况参数的预测能力. 展开更多
关键词 灰熔点 灰组分 广义回归神经网络 grnn
在线阅读 下载PDF
利用温度资料和广义回归神经网络模拟参考作物蒸散量 被引量:15
19
作者 冯禹 崔宁博 +2 位作者 龚道枝 胡笑涛 张宽地 《农业工程学报》 EI CAS CSCD 北大核心 2016年第10期81-89,F0003,共10页
参考作物蒸散量(reference evapotranspiration,ET0)精确模拟对水资源高效利用和灌溉制度制定具有重要意义,该文以四川盆地19个气象站点1961-1990年逐日最高、最低温度和大气顶层辐射作为输入参数,FAO-56 Penman-Monteith(PM)模型计算的... 参考作物蒸散量(reference evapotranspiration,ET0)精确模拟对水资源高效利用和灌溉制度制定具有重要意义,该文以四川盆地19个气象站点1961-1990年逐日最高、最低温度和大气顶层辐射作为输入参数,FAO-56 Penman-Monteith(PM)模型计算的ET0为标准值,建立基于广义回归神经网络(generalized regression neural network,GRNN)的ET0模拟模型,基于1991-2014年资料进行模型验证,将GRNN模型同Hargreaves(HS1)和改进Hargreaves(HS2)等简化模型的模拟结果进行比较,分析只有温度资料情况下不同模型模拟ET0误差的时空变异性。结果表明:GRNN、HS1和HS2模型均方根误差(root mean square error,RMSE)分别为0.41、1.16和0.70 mm/d,模型效率系数(Ens)分别为0.88、0.13和0.67。3种模型RMSE在时空上均呈现HS1>HS2>GRNN、Ens均呈现GRNN>HS2>HS1趋势;与PM模型模拟结果相比,GRNN、HS1和HS2模型模拟结果分别偏大0.8%、45.1%和17.3%。在时空尺度上的误差分析均表明利用温度资料建立的GRNN模型能够较为准确地模拟四川盆地ET0,因此可以作为资料缺失情况下ET0模拟的推荐模型。该研究可为四川盆地作物需水精确预测提供科学依据。 展开更多
关键词 温度 模型 农业 参考作物蒸散量 温度资料 Penman-Monteith模型 广义回归神经网络 模型适用性
在线阅读 下载PDF
基于广义回归神经网络的边坡稳定性评价 被引量:22
20
作者 兰海涛 李谦 韩春雨 《岩土力学》 EI CAS CSCD 北大核心 2009年第11期3460-3463,共4页
边坡失稳是比较常见的地质灾害,判定其稳定性的方法很多,在使用过程中也暴露出了这些方法的缺陷。针对这些问题,构建了适合于边坡稳定性评价的广义回归神经网络模型,并运用Matlab的神经网络工具箱进行了分析和计算,使用了相关数据来训... 边坡失稳是比较常见的地质灾害,判定其稳定性的方法很多,在使用过程中也暴露出了这些方法的缺陷。针对这些问题,构建了适合于边坡稳定性评价的广义回归神经网络模型,并运用Matlab的神经网络工具箱进行了分析和计算,使用了相关数据来训练和测试该模型的可靠性和可行性。结果表明,广义回归神经网络模型在使用过程中需选择合适的光滑因子,而所得出的数据与实际结果较为相符,解决了之前使用的BP神经网络模型的缺点,具有很好的工程运用前景。 展开更多
关键词 广义回归神经网络 边坡稳定性 光滑因子 神经网络模型
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部