期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于Spark和AMPSO的并行深度卷积神经网络优化算法 被引量:4
1
作者 刘卫明 罗全成 +1 位作者 毛伊敏 彭喆 《计算机应用研究》 CSCD 北大核心 2023年第10期2957-2966,共10页
针对并行DCNN算法在大数据环境下存在冗余参数过多、收敛速度慢、容易陷入局部最优和并行效率低的问题,提出了基于Spark和AMPSO的并行深度卷积神经网络优化算法PDCNN-SAMPSO。首先,该算法设计了基于卷积核重要性和相似度的卷积核剪枝策... 针对并行DCNN算法在大数据环境下存在冗余参数过多、收敛速度慢、容易陷入局部最优和并行效率低的问题,提出了基于Spark和AMPSO的并行深度卷积神经网络优化算法PDCNN-SAMPSO。首先,该算法设计了基于卷积核重要性和相似度的卷积核剪枝策略(KP-IS),通过剪枝模型中冗余的卷积核,解决了冗余参数过多的问题;接着,提出了基于自适应变异粒子群优化算法的模型并行训练策略(MPT-AMPSO),通过使用自适应变异的粒子群优化算法(AMPSO)初始化模型参数,解决了并行DCNN算法收敛速度慢和容易陷入局部最优的问题;最后,提出了基于节点性能的动态负载均衡策略(DLBNP),通过均衡集群中各节点负载,解决了集群并行效率低的问题。实验表明,当选取8个计算节点处理CompCars数据集时,PDCNN-SAMPSO较Dis-CNN、DS-DCNN、CLR-Distributed-CNN、RS-DCNN的运行时间分别降低了22%、30%、37%和27%,加速比分别高出了1.707、1.424、1.859、0.922,top-1准确率分别高出了4.01%、4.89%、2.42%、5.94%,表明PDCNN-AMPSO在大数据环境下具有良好的分类性能,适用于大数据环境下DCNN模型的并行训练。 展开更多
关键词 并行dcnn算法 Spark框架 Pdcnn-SAMPSO算法 负载均衡策略
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部