期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于改进Cascade RCNN的输电线路防振锤脱落检测方法 被引量:5
1
作者 阎光伟 刘润泽 +1 位作者 焦润海 何慧 《图学学报》 CSCD 北大核心 2023年第5期849-860,共12页
无人机巡检输电线路时,因拍摄角度和距离问题,容易出现被输电线遮挡和远距离拍摄的防振锤脱落目标,导致目标特征被遮挡且分辨率较低,且部分防振锤出现滑移现象,导致目标识别准确率降低。针对以上问题,提出一种基于改进Cascade RCNN的防... 无人机巡检输电线路时,因拍摄角度和距离问题,容易出现被输电线遮挡和远距离拍摄的防振锤脱落目标,导致目标特征被遮挡且分辨率较低,且部分防振锤出现滑移现象,导致目标识别准确率降低。针对以上问题,提出一种基于改进Cascade RCNN的防振锤脱落检测网络。第一,设计了对比学习网络,将正负样本与真实样本的特征进行对比学习,利用对比损失函数训练网络,使其能更加关注到被遮挡的防振锤脱落目标,提升其特征提取能力;第二,进行了分类器增强操作,筛选出网络级联结构中回归效果较好的感兴趣区域并送入最后的分类回归队列中,提高了分类器的分类能力,进而提升检测目标的分类分数;第三,设计了并行注意力机制模块,整合网络提取的特征,增大关键特征的权重,使网络关注到图像中更关键的区域;在特征金字塔中,将双线性插值方法代替为反卷积,提升特征还原能力。经交叉验证实验结果表明,改进后的模型召回率、精确率和平均精度达到了97.5%,91.0%和92.0%,相比基线模型分别提高了6.9%,28.4%和8.0%。 展开更多
关键词 输电线路 防振锤脱落 Cascade RCNN 对比学习网络 并行注意力模块 分类器增强 样本相似度
在线阅读 下载PDF
基于重参数化多尺度融合网络的高效极暗光原始图像降噪 被引量:3
2
作者 魏恺轩 付莹 《计算机科学》 CSCD 北大核心 2022年第8期120-126,共7页
实用的暗光降噪增强解决方案往往需要具备计算速度快、内存效率高、能够实现视觉上高质量的降噪等优点。现有方法大多以提升降噪质量为目标,因此在速度和内存要求上有所折中,这在很大程度上限制了其实用性。文中提出了一种新的深度降噪... 实用的暗光降噪增强解决方案往往需要具备计算速度快、内存效率高、能够实现视觉上高质量的降噪等优点。现有方法大多以提升降噪质量为目标,因此在速度和内存要求上有所折中,这在很大程度上限制了其实用性。文中提出了一种新的深度降噪网络——重参数化多尺度融合网络,用于极暗光单张原始图像降噪,在不损失降噪性能的同时加快模型的推断速度并降低内存开销。具体地,在多尺度空间提取图像特征,利用轻量级的空间通道并行注意力模块动态自适应地聚焦于空间及通道中的核心特征;同时使用重参数化的卷积单元,在不增加任何推断计算量的情况下进一步丰富模型的表征能力。该模型在常见CPU上(如Intel i7-7700K)可以在1s左右恢复超高清4K分辨率图像,在普通GPU(如NVIDIA GTX 1080Ti)上以24帧率的速度运行,在几乎4倍快于现有先进方法(如UNet)的同时仍保持具有竞争力的恢复质量。 展开更多
关键词 重参数化卷积单元 多尺度融合 空间通道并行注意力模块 极暗光图像降噪
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部