期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于多模态特征融合的并行双通道轴承故障诊断
1
作者 曹月 王衍学 +1 位作者 姚家驰 王祎颜 《机床与液压》 北大核心 2025年第13期71-76,共6页
针对单一通道解释数据存在不全面性、难以达到较高的诊断准确率且在实际生产中旋转机械轴承故障信号微弱易被噪声淹没的问题,提出一种利用图像和时序信号分别进行特征提取、融合分类的并行双通道电机轴承故障分类方法。采用格拉姆角场... 针对单一通道解释数据存在不全面性、难以达到较高的诊断准确率且在实际生产中旋转机械轴承故障信号微弱易被噪声淹没的问题,提出一种利用图像和时序信号分别进行特征提取、融合分类的并行双通道电机轴承故障分类方法。采用格拉姆角场将时序信号转化为二维图像,随后将一维信号和二维图像同时输入到并行双通道模型中。第一个通道采用卷积神经网络提取空间信息;第二个通道采用门控循环单元挖掘振动信号中的时序特征。最后,将两个通道提取的时空特征融合并引入多头自注意力机制进行训练。基于公开和实测数据集的实验结果表明:该诊断方法在多种工况下对故障类型的诊断平均准确率高达98.13%;与单通道模型相比具有更高的准确率和鲁棒性。 展开更多
关键词 故障诊断 并行通道 多模态融合 格拉姆角场 自注意力机制
在线阅读 下载PDF
基于改进注意力机制的认知障碍病程分类 被引量:2
2
作者 李梅梅 胡春海 +1 位作者 周影 宋昕 《计量学报》 CSCD 北大核心 2023年第2期296-303,共8页
阿尔茨海默病(AD)是一种发病进程缓慢、随着时间不断恶化的神经退化性疾病,在老龄化的趋势下,AD患者数量日渐增加。因此,如何对其予以早期精准诊断并进行正向干预是急需解决的问题。为提高计算机辅助诊断的效率,同时促进疾病的病理生理... 阿尔茨海默病(AD)是一种发病进程缓慢、随着时间不断恶化的神经退化性疾病,在老龄化的趋势下,AD患者数量日渐增加。因此,如何对其予以早期精准诊断并进行正向干预是急需解决的问题。为提高计算机辅助诊断的效率,同时促进疾病的病理生理机制研究,提出了改进的基于SE模块二维双路径融合网络的分类方法,在网络中加入缩减系数模块,增加图片有用信息占比;对通道注意模块的权重函数重新设计,增大特征图间差异,联合二维双路径网络,增大网络倚重点,达到更好分类性能的同时,防止模型过拟合。使用ADNI数据集对AD、EMCI、NC进行二分类,实验表明所提出模型准确度相比于VGG和二维双路径融合模型分别提高了5.59%和8.11%,与其它先进方法进行比较验证了所提方法的可行性。 展开更多
关键词 计量学 认知障碍 病程分类 注意力机制 MRI SE模块 VGG模型 路径融合网络
在线阅读 下载PDF
基于改进一维卷积和双向长短期记忆神经网络的故障诊断方法 被引量:14
3
作者 董永峰 孙跃华 +2 位作者 高立超 韩鹏 季海鹏 《计算机应用》 CSCD 北大核心 2022年第4期1207-1215,共9页
针对工业领域中故障诊断数据存在时序性和夹杂强噪声的特点导致的收敛速度慢以及诊断精度低的问题,提出了一种基于改进一维卷积和双向长短期记忆(1DCNN-BiLSTM)神经网络融合的故障诊断方法。该方法包括故障振动信号的预处理、特征的自... 针对工业领域中故障诊断数据存在时序性和夹杂强噪声的特点导致的收敛速度慢以及诊断精度低的问题,提出了一种基于改进一维卷积和双向长短期记忆(1DCNN-BiLSTM)神经网络融合的故障诊断方法。该方法包括故障振动信号的预处理、特征的自动提取以及振动信号的分类。首先,采用自适应白噪声的完整经验模态分解(CEEMDAN)技术对原始振动信号进行预处理;其次,构建1DCNN-BiLSTM双通道模型,将处理后信号输入双向长短期记忆(BiLSTM)神经网络模型和一维卷积神经网络(1DCNN)模型两个通道,从而对信号的时序相关性特征、局部空间的非相关性特征和弱周期性规律进行充分提取;然后,针对信号夹杂强噪声的问题,对压缩与激励网络(SENet)模块进行改进并将其作用于两个不同的通道;最后,输入全连接层将双通道提取的特征进行融合并借助Softmax分类器实现对设备故障的精确识别。使用凯斯西储大学轴承数据集进行实验,结果表明改进后的SENet模块同时作用于1DCNN通道和stacked BiLSTM通道,1DCNN-BiLSTM双通道模型在保证快速收敛的情况下有最高诊断精度96.87%,优于传统单通道模型,有效提高了机械设备故障诊断效率。 展开更多
关键词 注意力机制 卷积神经网络 向长短期记忆神经网络 通道 故障诊断
在线阅读 下载PDF
基于扩散模型的红外小目标检测
4
作者 屠晨浩 叶文亚 +2 位作者 杜妮妮 郑彬淏 徐生 《红外技术》 北大核心 2025年第6期757-764,共8页
红外小目标检测作为一项复杂且关键的计算机视觉任务,面临着目标尺寸微小、对比度低、背景噪声干扰强烈及数据稀缺等多重挑战,这些问题极大地制约了检测精度与实时性。现有基于深度学习的算法大多基于分割范式,通过设计结构较深的编码器... 红外小目标检测作为一项复杂且关键的计算机视觉任务,面临着目标尺寸微小、对比度低、背景噪声干扰强烈及数据稀缺等多重挑战,这些问题极大地制约了检测精度与实时性。现有基于深度学习的算法大多基于分割范式,通过设计结构较深的编码器-解码器网络实现分割掩码的生成,由于缺乏足够的特征表示和学习能力,在应对各种复杂场景时检测精度较低。鉴于此,受启发于人工智能领域扩散模型技术所取得的巨大成功,本文提供了一种新的解决思路,将红外小目标检测问题描述为生成式任务,并提出了一个条件去噪网络diff-ISTD。该网络利用逐步去噪与重建优势,挖掘图像内在深层次统计特性,从而能够更精确地区分并捕获微弱且易于混淆的小目标特征。具体来说,该网络包含条件分支网络以及去噪分支网络,分别用于充分提取红外图像的先验知识和细化含有噪声的掩码。此外,本文还设计了一种并行双维自注意力计算(PDSA)模块,融合空间与通道维度分析,极大增强了模型对全局结构和局部细节的把握力,克服了由分辨率和环境多样性引起的目标模糊难题。综合实验结果显示,diff-ISTD在面对极端检测条件时,相比目前先进的分割方法,展现出卓越的性能与更高的检测效率,为克服小目标检测领域的长期挑战开辟了新路径。 展开更多
关键词 红外图像 弱小目标检测 并行双维自注意力机制 扩散模型
在线阅读 下载PDF
雾计算环境下入侵检测模型研究
5
作者 李晋国 焦旭斌 《计算机工程》 CAS CSCD 北大核心 2022年第5期43-52,共10页
当网络在云数据中心发送和处理数据的延迟较大时,大多实时智能应用程序都难以达到预期效果。雾计算允许这些对延迟敏感的应用程序在边缘设备上运行,这些设备被称为雾节点,其在地理位置上更接近应用程序。然而,雾计算中的雾节点通常计算... 当网络在云数据中心发送和处理数据的延迟较大时,大多实时智能应用程序都难以达到预期效果。雾计算允许这些对延迟敏感的应用程序在边缘设备上运行,这些设备被称为雾节点,其在地理位置上更接近应用程序。然而,雾计算中的雾节点通常计算资源有限,容易受到海量高维异常流量攻击,为此,提出一种特征降维的改进准递归神经网络,并基于该网络构建轻量级入侵检测模型FR-IQRNN。将雾节点采集到的高维攻击样本编码为低维向量以减少冗余特征,利用FR-IQRNN的循环连接捕获低维向量的时间依赖关系,同时在时间步长和小批量维度中实现并行计算,在此基础上,引入注意力机制强化模型对关键特征的提取能力,从而实现雾节点的入侵检测。在公开数据集UNSW_NB15上,FR-IQRNN模型能取得99.51%的准确率、99.23%的精确率以及99.79%的召回率,优于RNN-IDS、AESVM等模型,并且仅需127.94 s便达到95%以上的训练精度。在NSL-KDD数据集上,FR-IQRNN模型获得99.39%的准确率和99.27%的召回率,且在鲁棒性方面表现突出。 展开更多
关键词 雾计算 入侵检测 准递归神经网络 并行运算 注意力机制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部