期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于FPGA的YOLOv5s网络高效卷积加速器设计
被引量:
3
1
作者
刘谦
王林林
周文勃
《电讯技术》
北大核心
2024年第3期366-375,共10页
为提升在资源受限情况下的嵌入式平台上卷积神经网络(Convolutional Neural Network,CNN)目标识别的资源利用率和能效,提出了一种适用于YOLOv5s目标识别网络的现场可编程门阵列(Field Programmable Gate Array,FPGA)共享计算单元的并行...
为提升在资源受限情况下的嵌入式平台上卷积神经网络(Convolutional Neural Network,CNN)目标识别的资源利用率和能效,提出了一种适用于YOLOv5s目标识别网络的现场可编程门阵列(Field Programmable Gate Array,FPGA)共享计算单元的并行卷积加速结构,该结构通过共享3×3卷积和1×1卷积的计算单元提高了加速器硬件资源利用率。此外,还利用卷积层BN(Batch Normalization)层融合、模型量化、循环分块以及双缓冲等策略,提高系统计算效率并减少硬件资源开销。实验结果表明,加速器在200 MHz的工作频率下,实现的卷积计算峰值性能可达97.7 GOPS(Giga Operations per Second),其YOLOv5s网络的平均计算性可达78.34 GOPS,与其他FPGA加速器方案相比在DSP效率、能耗比以及整体性能等方面具有一定的提升。
展开更多
关键词
卷积
神经网络(CNN)
目标识别
YOLOv5s
并行卷积加速结构
在线阅读
下载PDF
职称材料
题名
基于FPGA的YOLOv5s网络高效卷积加速器设计
被引量:
3
1
作者
刘谦
王林林
周文勃
机构
中国科学院国家空间科学中心
中国科学院大学计算机科学与技术学院
出处
《电讯技术》
北大核心
2024年第3期366-375,共10页
基金
国家重点研发计划(2020YFE0202100)。
文摘
为提升在资源受限情况下的嵌入式平台上卷积神经网络(Convolutional Neural Network,CNN)目标识别的资源利用率和能效,提出了一种适用于YOLOv5s目标识别网络的现场可编程门阵列(Field Programmable Gate Array,FPGA)共享计算单元的并行卷积加速结构,该结构通过共享3×3卷积和1×1卷积的计算单元提高了加速器硬件资源利用率。此外,还利用卷积层BN(Batch Normalization)层融合、模型量化、循环分块以及双缓冲等策略,提高系统计算效率并减少硬件资源开销。实验结果表明,加速器在200 MHz的工作频率下,实现的卷积计算峰值性能可达97.7 GOPS(Giga Operations per Second),其YOLOv5s网络的平均计算性可达78.34 GOPS,与其他FPGA加速器方案相比在DSP效率、能耗比以及整体性能等方面具有一定的提升。
关键词
卷积
神经网络(CNN)
目标识别
YOLOv5s
并行卷积加速结构
Keywords
convolutional neural network(CNN)
target detection
YOLOv5s
parallel convolution acceleration structure
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于FPGA的YOLOv5s网络高效卷积加速器设计
刘谦
王林林
周文勃
《电讯技术》
北大核心
2024
3
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部