期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于FPGA的YOLOv5s网络高效卷积加速器设计 被引量:3
1
作者 刘谦 王林林 周文勃 《电讯技术》 北大核心 2024年第3期366-375,共10页
为提升在资源受限情况下的嵌入式平台上卷积神经网络(Convolutional Neural Network,CNN)目标识别的资源利用率和能效,提出了一种适用于YOLOv5s目标识别网络的现场可编程门阵列(Field Programmable Gate Array,FPGA)共享计算单元的并行... 为提升在资源受限情况下的嵌入式平台上卷积神经网络(Convolutional Neural Network,CNN)目标识别的资源利用率和能效,提出了一种适用于YOLOv5s目标识别网络的现场可编程门阵列(Field Programmable Gate Array,FPGA)共享计算单元的并行卷积加速结构,该结构通过共享3×3卷积和1×1卷积的计算单元提高了加速器硬件资源利用率。此外,还利用卷积层BN(Batch Normalization)层融合、模型量化、循环分块以及双缓冲等策略,提高系统计算效率并减少硬件资源开销。实验结果表明,加速器在200 MHz的工作频率下,实现的卷积计算峰值性能可达97.7 GOPS(Giga Operations per Second),其YOLOv5s网络的平均计算性可达78.34 GOPS,与其他FPGA加速器方案相比在DSP效率、能耗比以及整体性能等方面具有一定的提升。 展开更多
关键词 卷积神经网络(CNN) 目标识别 YOLOv5s 并行卷积加速结构
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部