The difference of sintering crunodes of metal powders and fibers is discussed. The mathematical model of the surface diffusion described by the difference in mean curvature is defined as a Hamilton-Jacobi-type equatio...The difference of sintering crunodes of metal powders and fibers is discussed. The mathematical model of the surface diffusion described by the difference in mean curvature is defined as a Hamilton-Jacobi-type equation, and the model is numerically solved by the level set method. The three-dimensional numerical simulations of two metal powders and fibers(the fiber angle is 0° or 90°) are implemented by this mathematical model, respectively. The numerical simulation results accord with the experimental ones. The sintering neck growth trends of metal powders and metal fibers are similar. The sintering neck radius of metal fibers is larger than that of metal powders. The difference of the neck radius is caused by the difference of geometric structure which makes an important influence on the curvature affecting the migration rate of atoms.展开更多
A series of laboratory experiments and PFC numerical simulations for rock-like material specimens containing two unparallel fissures were carried out.On the basis of experimental and numerical results,the stress-strai...A series of laboratory experiments and PFC numerical simulations for rock-like material specimens containing two unparallel fissures were carried out.On the basis of experimental and numerical results,the stress-strain curves,mechanical properties,AE events,cracking behavior and energy characteristics were analyzed to reveal the macro-mechanical behavior and meso-mechanism of pre-fissured specimens under different loading rates.Investigated results show that:1)When the loading rate is relatively low,the stress-strain curves show a brittle response.When the loading rate is relatively high,the curve shows a more ductile response.Both of the peak strength and elastic mudulus increase with the increase of loading rate,which can be expressed as power functions.2)Four crack types are identified,i.e.,tensile crack,shear crack,far-field crack and surface spalling.Moreover,the tensile crack,far-field crack and surface spalling are under tensile mechanism,while the shear crack is under shear mechanism.3)The drops of the stress-strain curves all correspond to the crack initiation or coalescence,which is also linked to a sudden increasing in the accumulated micro-crack curve.4)Both of the maximum bond force and energy have the similar trend with the increase of loading rate to peak strength,which indicates that the trend of peak strength can be explained by the meso-mechanics and energy.展开更多
基金Projects(51174236,51134003)supported by the National Natural Science Foundation of ChinaProject(2011CB606306)supported by the National Basic Research Program of ChinaProject(PMM-SKL-4-2012)supported by the Opening Project of State Key Laboratory of Porous Metal Materials(Northwest Institute for Nonferrous Metal Research),China
文摘The difference of sintering crunodes of metal powders and fibers is discussed. The mathematical model of the surface diffusion described by the difference in mean curvature is defined as a Hamilton-Jacobi-type equation, and the model is numerically solved by the level set method. The three-dimensional numerical simulations of two metal powders and fibers(the fiber angle is 0° or 90°) are implemented by this mathematical model, respectively. The numerical simulation results accord with the experimental ones. The sintering neck growth trends of metal powders and metal fibers are similar. The sintering neck radius of metal fibers is larger than that of metal powders. The difference of the neck radius is caused by the difference of geometric structure which makes an important influence on the curvature affecting the migration rate of atoms.
基金Project(BK20150005) supported by the Natural Science Foundation of Jiangsu Province for Distinguished Young Scholars,ChinaProject(2014YC10) supported by the Fundamental Research Funds for the Central Universities,China
文摘A series of laboratory experiments and PFC numerical simulations for rock-like material specimens containing two unparallel fissures were carried out.On the basis of experimental and numerical results,the stress-strain curves,mechanical properties,AE events,cracking behavior and energy characteristics were analyzed to reveal the macro-mechanical behavior and meso-mechanism of pre-fissured specimens under different loading rates.Investigated results show that:1)When the loading rate is relatively low,the stress-strain curves show a brittle response.When the loading rate is relatively high,the curve shows a more ductile response.Both of the peak strength and elastic mudulus increase with the increase of loading rate,which can be expressed as power functions.2)Four crack types are identified,i.e.,tensile crack,shear crack,far-field crack and surface spalling.Moreover,the tensile crack,far-field crack and surface spalling are under tensile mechanism,while the shear crack is under shear mechanism.3)The drops of the stress-strain curves all correspond to the crack initiation or coalescence,which is also linked to a sudden increasing in the accumulated micro-crack curve.4)Both of the maximum bond force and energy have the similar trend with the increase of loading rate to peak strength,which indicates that the trend of peak strength can be explained by the meso-mechanics and energy.