为提高转向架构架模型的修正效率和实时性,提出了一种基于Kriging模型和无迹卡尔曼滤波的模型修正方法。首先,对构架进行模态分析,引入信息熵确定模态阶数来优选频响函数频率区间。其次,构造Kriging模型,将频响函数经过小波变换并提取第...为提高转向架构架模型的修正效率和实时性,提出了一种基于Kriging模型和无迹卡尔曼滤波的模型修正方法。首先,对构架进行模态分析,引入信息熵确定模态阶数来优选频响函数频率区间。其次,构造Kriging模型,将频响函数经过小波变换并提取第4层低频系数作为Kriging模型输出,并通过改进的灰狼算法(grey wolf optimizer,GWO)确定Kriging模型相关参数值。最后,以待修正参数作为状态向量,以Kriging模型预测的小波系数和真实响应的小波系数之差的平方和作为观测函数,通过无迹卡尔曼滤波算法求解待修正参数。结果表明,所提方法对构架模型参数修正有良好的精度、效率和鲁棒性,且在0.03 s内收敛到真实值。展开更多
为克服现有电力通信监测系统因噪声处理不佳导致的信号质量不高、系统负载能力差、耗时长等问题,将系统划分为数据层、网络层和应用层3个层次,采用卡尔曼滤波算法,设计了一种改进的电力通信自动化监测系统。在数据层通过设备采集电力通...为克服现有电力通信监测系统因噪声处理不佳导致的信号质量不高、系统负载能力差、耗时长等问题,将系统划分为数据层、网络层和应用层3个层次,采用卡尔曼滤波算法,设计了一种改进的电力通信自动化监测系统。在数据层通过设备采集电力通信数据,使用单元集成方式构建网元控制模块存储数据;通信传输信道将采集的数据传输至网络层,通过信道连接到应用层监测中心;基于数据服务器、交换器及工作站、路由器等设备构建数据处理模块、监测模块和管理模块,通过卡尔曼滤波算法完成数据处理,实现电力通信自动化监测系统设计。实验结果表明:该系统信号与干扰加噪声比(signal to interference plus noise ratio,SINR)较高,负载能力强,负载率低至40%左右,且平均运行耗时为8.0 s。展开更多
文摘为提高转向架构架模型的修正效率和实时性,提出了一种基于Kriging模型和无迹卡尔曼滤波的模型修正方法。首先,对构架进行模态分析,引入信息熵确定模态阶数来优选频响函数频率区间。其次,构造Kriging模型,将频响函数经过小波变换并提取第4层低频系数作为Kriging模型输出,并通过改进的灰狼算法(grey wolf optimizer,GWO)确定Kriging模型相关参数值。最后,以待修正参数作为状态向量,以Kriging模型预测的小波系数和真实响应的小波系数之差的平方和作为观测函数,通过无迹卡尔曼滤波算法求解待修正参数。结果表明,所提方法对构架模型参数修正有良好的精度、效率和鲁棒性,且在0.03 s内收敛到真实值。
文摘为克服现有电力通信监测系统因噪声处理不佳导致的信号质量不高、系统负载能力差、耗时长等问题,将系统划分为数据层、网络层和应用层3个层次,采用卡尔曼滤波算法,设计了一种改进的电力通信自动化监测系统。在数据层通过设备采集电力通信数据,使用单元集成方式构建网元控制模块存储数据;通信传输信道将采集的数据传输至网络层,通过信道连接到应用层监测中心;基于数据服务器、交换器及工作站、路由器等设备构建数据处理模块、监测模块和管理模块,通过卡尔曼滤波算法完成数据处理,实现电力通信自动化监测系统设计。实验结果表明:该系统信号与干扰加噪声比(signal to interference plus noise ratio,SINR)较高,负载能力强,负载率低至40%左右,且平均运行耗时为8.0 s。