期刊文献+
共找到878篇文章
< 1 2 44 >
每页显示 20 50 100
非线性自适应平方根无迹卡尔曼滤波方法研究 被引量:19
1
作者 张玉峰 周奇勋 +1 位作者 周勇 张举中 《计算机工程与应用》 CSCD 北大核心 2016年第16期36-40,共5页
针对带有附加噪声且噪声特性未知的系统,提出了一种非线性卡尔曼滤波方法——自适应平方根无迹卡尔曼滤波(NASRUKF)方法,该方法基于平方根滤波的思想,对传统的Sage-Husa自适应滤波算法进行了改进,并与平方根无迹卡尔曼滤波(SRUKF)算法... 针对带有附加噪声且噪声特性未知的系统,提出了一种非线性卡尔曼滤波方法——自适应平方根无迹卡尔曼滤波(NASRUKF)方法,该方法基于平方根滤波的思想,对传统的Sage-Husa自适应滤波算法进行了改进,并与平方根无迹卡尔曼滤波(SRUKF)算法相结合用来进行非线性滤波。该算法能直接对非线性系统的状态方差阵和噪声方差阵的平方根进行递推与估算,确保状态和噪声方差阵的对称性和非负定性。将所提方法通过计算机仿真技术与SRUKF算法进行对比,结果表明NASRUKF方法在滤波精度、稳定性和自适应能力方面均优于SRUKF方法。 展开更多
关键词 非线性自适应平方根无迹卡尔曼滤波方法(NASRUKF) 卡尔曼滤波 平方根无迹卡尔曼滤波(SRUKF) Sage-Husa滤波 非线性滤波 预估
在线阅读 下载PDF
基于平方根无迹卡尔曼滤波的锂电池状态估计 被引量:38
2
作者 费亚龙 谢长君 +2 位作者 汤泽波 曾春年 全书海 《中国电机工程学报》 EI CSCD 北大核心 2017年第15期4514-4520,共7页
在充电式混合动力电动汽车(plug-in hybrid electric vehicle,PHEV)和电动汽车(electric vehicle,EV)中,对电池进行精确、可靠的荷电状态估计(state of charge,SOC)非常重要。传统估计方法存在计算量大、估计不精确等缺点,提出一种平方... 在充电式混合动力电动汽车(plug-in hybrid electric vehicle,PHEV)和电动汽车(electric vehicle,EV)中,对电池进行精确、可靠的荷电状态估计(state of charge,SOC)非常重要。传统估计方法存在计算量大、估计不精确等缺点,提出一种平方根无迹卡尔曼滤波(square root unscented Kalman filter,SRUKF)算法对SOC进行实时估计及更新。利用无迹变换(unscented transformation,UT)精确估计系统方程的均值和协方差,使估算值达到二阶精度。利用平方根算法保证状态协方差的半正定性,提高数字计算的稳定性。通过实验对比,验证了该算法的有效性。结果表明,该方法可使状态估计值具有较小的误差和快速跟随性,满足了SOC估计的实际需求。 展开更多
关键词 锂电池 荷电状态 平方根无迹卡尔曼滤波 无迹 变换 平方根算法
在线阅读 下载PDF
平方根无迹卡尔曼滤波作球面变换的SOC估计 被引量:2
3
作者 何俊儒 王洪诚 +1 位作者 杨欣荣 王蕾 《电源技术》 CAS CSCD 北大核心 2018年第1期114-118,共5页
针对现有的电池荷电状态(SOC)估计方法存在计算推导过程复杂以及线性化精度低的缺点,提出了一种新的基于平方根无迹卡尔曼滤波在单位超球体中作球面变换的锂电池SOC估计方法。这种方法无需对非线性模型线性化且与传统的无迹卡尔曼滤波相... 针对现有的电池荷电状态(SOC)估计方法存在计算推导过程复杂以及线性化精度低的缺点,提出了一种新的基于平方根无迹卡尔曼滤波在单位超球体中作球面变换的锂电池SOC估计方法。这种方法无需对非线性模型线性化且与传统的无迹卡尔曼滤波相比,通过球面变换得到的Sigma点也更少,从而降低了计算要求。修正了电池的二阶等效电路模型,然后给出了所提出估计方法的具体步骤。最后,通过实验对估计方法进行了验证,分析了所提出的方法在SOC估计精度和鲁棒性方面的性能。实验表明,所提出的估计方法能顺利地完成电池SOC的精确估计,估计误差最大仅为4.98%,估计精度受参数变化影响小,具有一定的鲁棒性。 展开更多
关键词 锂电池 二阶等效电路模型 SOC 平方根无迹卡尔曼滤波 球面变换
在线阅读 下载PDF
自适应平方根无迹卡尔曼滤波算法 被引量:17
4
作者 李鹏 宋申民 陈兴林 《控制理论与应用》 EI CAS CSCD 北大核心 2010年第2期143-146,共4页
将高斯过程回归融入平方根无迹卡尔曼滤波(SRUKF)算法,本文提出了一种不确定系统模型协方差自适应调节滤波算法.该算法分为学习和估计两部分:学习阶段用高斯过程对训练数据进行学习,得到系统回归模型及噪声协方差;估计阶段由回归模型代... 将高斯过程回归融入平方根无迹卡尔曼滤波(SRUKF)算法,本文提出了一种不确定系统模型协方差自适应调节滤波算法.该算法分为学习和估计两部分:学习阶段用高斯过程对训练数据进行学习,得到系统回归模型及噪声协方差;估计阶段由回归模型代替状态方程和观测方程,相应的噪声协方差实时自适应调整.该方法克服了传统方法容易受系统动态模型不确定性和噪声协方差不准确限制的问题,仿真结果验证了算法的有效性. 展开更多
关键词 高斯过程回归 平方根无迹卡尔曼滤波 自适应
在线阅读 下载PDF
平方根无迹卡尔曼滤波仅测角导航的空间交会闭环协方差分析方法
5
作者 尤岳 王华 +1 位作者 Christophe Paccolat 李九人 《国防科技大学学报》 EI CAS CSCD 北大核心 2017年第4期33-39,共7页
针对基于仅测角导航的空间交会问题,开展了采用线性协方差进行闭环控制误差快速分析方法的研究。建立了基于平方根无迹卡尔曼滤波(Square Root Unscented Kalman Filter,SRUKF)的仅测角导航算法并推导了观测敏感矩阵,构建了基于多脉冲H... 针对基于仅测角导航的空间交会问题,开展了采用线性协方差进行闭环控制误差快速分析方法的研究。建立了基于平方根无迹卡尔曼滤波(Square Root Unscented Kalman Filter,SRUKF)的仅测角导航算法并推导了观测敏感矩阵,构建了基于多脉冲Hill制导的闭环控制线性协方差分析模型。算例验证结果表明:提出的闭环控制协方差分析结果与Monte Carlo打靶结果能够很好地吻合;该方法适用于采用传统扩展卡尔曼滤波(Extended Kalman Filter,EKF)的仅测角导航问题,但其迹向位置的估计存在一个与该方向控制误差方差相当的偏心,其误差椭圆的长轴和短轴分别比基于SRUKF的估计结果大24.68%和20.56%。此外,由于采用了QR分解和Cholesky因子更新两种高效的代数运算,基于SRUKF的协方差分析模型的计算速度要比基于EKF的协方差分析模型的大10%。 展开更多
关键词 平方根无迹卡尔曼滤波 仅测角导航 闭环协方差分析 空间交会
在线阅读 下载PDF
基于平方根无迹卡尔曼滤波的混沌信号盲分离
6
作者 陈越 李硕明 江武志 《探测与控制学报》 CSCD 北大核心 2015年第2期66-71,共6页
针对现有卡尔曼盲分离算法在分离混沌信号时性能较差的问题,提出了基于平方根无迹卡尔曼滤波器(SRUKF)的混沌信号盲分离方法。该方法采用递推方式实现,在每一次递推中,首先将分离向量作为状态变量进行卡尔曼估计,然后将分离向量视为已知... 针对现有卡尔曼盲分离算法在分离混沌信号时性能较差的问题,提出了基于平方根无迹卡尔曼滤波器(SRUKF)的混沌信号盲分离方法。该方法采用递推方式实现,在每一次递推中,首先将分离向量作为状态变量进行卡尔曼估计,然后将分离向量视为已知量,再次利用SRUKF重建源信号,从而得到源信号在最小均方误差意义下的优化估计。实验仿真表明,所提算法能够快速收敛,并且在噪声环境下估计误差比现有的卡尔曼盲分离方法明显减小。 展开更多
关键词 盲分离 混沌信号 平方根无迹卡尔曼滤波
在线阅读 下载PDF
基于平方根无迹卡尔曼滤波平滑算法的水下纯方位目标跟踪(英文) 被引量:12
7
作者 王宝宝 吴盘龙 《中国惯性技术学报》 EI CSCD 北大核心 2016年第2期180-184,共5页
为了避免被动跟踪中非线性带来的计算复杂化及跟踪精度的下降,提出将平方根无迹卡尔曼滤波平滑算法(SR-UKFS)应用到水下纯方位目标跟踪。SR-UKFS利用Rauch-Tung-Striebel(RTS)平滑算法将平方根无迹卡尔曼滤波(SR-UKF)作为前向滤波算法... 为了避免被动跟踪中非线性带来的计算复杂化及跟踪精度的下降,提出将平方根无迹卡尔曼滤波平滑算法(SR-UKFS)应用到水下纯方位目标跟踪。SR-UKFS利用Rauch-Tung-Striebel(RTS)平滑算法将平方根无迹卡尔曼滤波(SR-UKF)作为前向滤波算法得到的目标状态估计向后平滑,得到前一时刻目标状态估计,再利用该状态估计值进行再次滤波得到当前时刻目标状态估计。该算法得到的前一时刻的目标状态估计更加精确,从而进一步提高了目标跟踪的精度。最后,通过对SR-UKFS算法和SR-UKF算法的跟踪性能进行了对比分析和验证,仿真结果表明在相同条件下,SR-UKFS算法能减少59%的位置误差和54%的速度误差,SR-UKFS算法应用于水下纯方位目标跟踪系统是有效的,为水下纯方位目标跟踪系统的工程实现提供了非常有价值的参考。 展开更多
关键词 目标跟踪 纯方位 平方根无迹卡尔曼滤波 平滑算法 前向滤波 后向平滑
在线阅读 下载PDF
改进的强追踪平方根无迹卡尔曼滤波时变结构参数识别 被引量:6
8
作者 杨纪鹏 夏烨 +1 位作者 闫业祥 孙利民 《振动与冲击》 EI CSCD 北大核心 2021年第23期74-82,126,共10页
地震作用下时变结构参数识别一直为研究者所关心,传统扩展卡尔曼滤波(EKF)、无迹卡尔曼滤波(UKF)等方法存在时变结构参数跟踪识别能力弱、协方差矩阵开方时矩阵奇异导致计算不稳定等问题。基于平方根无迹卡尔曼滤波(SRUKF),提出一种改... 地震作用下时变结构参数识别一直为研究者所关心,传统扩展卡尔曼滤波(EKF)、无迹卡尔曼滤波(UKF)等方法存在时变结构参数跟踪识别能力弱、协方差矩阵开方时矩阵奇异导致计算不稳定等问题。基于平方根无迹卡尔曼滤波(SRUKF),提出一种改进的强追踪平方根无迹卡尔曼滤波(MSTSRUKF)方法。首先使用QR分解改进平方根无迹卡尔曼滤波算法中协方差矩阵平方根计算方法,使计算过程无条件数值稳定;其次改进滤波更新中协方差矩阵平方根的计算方法,同时引入观测矩阵的等价形式,保证算法的稳定性的同时,避免求解复杂系统的Jacobian矩阵;最后引入强追踪滤波技术,更新时间预测协方差矩阵,使算法具备时变参数跟踪能力。数值分析结果表明,MSTSRUKF算法能有效识别线性和非线性系统突变参数,同时能较准确地预测结构状态,计算过程中数值稳定,算法具有较强的抗噪性。 展开更多
关键词 地震 平方根无迹卡尔曼滤波(SRUKF) QR分解 时变参数识别
在线阅读 下载PDF
基于自适应平方根无迹卡尔曼滤波算法的锂离子电池SOC和SOH估计 被引量:76
9
作者 程泽 杨磊 孙幸勉 《中国电机工程学报》 EI CSCD 北大核心 2018年第8期2384-2393,共10页
为提高锂离子电池荷电状态(state of charge,SOC)的估计精度并准确估计健康状态(state of health,SOH),以二阶RC等效电路模型为研究对象,基于Sage-Husa自适应滤波的思想,对传统的平方根无迹卡尔曼滤波(square-root unscented Kalma... 为提高锂离子电池荷电状态(state of charge,SOC)的估计精度并准确估计健康状态(state of health,SOH),以二阶RC等效电路模型为研究对象,基于Sage-Husa自适应滤波的思想,对传统的平方根无迹卡尔曼滤波(square-root unscented Kalman filter,SRUKF)进行改进,提出一种自适应SRUKF(adaptive square-root unscented Kalman filter,ASRUKF)算法,该算法通过对状态方差阵和噪声方差阵平方根的递推估算,确保了状态和噪声方差阵的对称性和非负定性。验证结果显示,相比于SRUKF算法,ASRUKF算法能够得到精度更高的SOC估计值,并在FUDS工况下将最大SOC估计误差降低4%。针对电池欧姆内阻和容量参数随着电池的老化而变化的现象,对内阻和容量进行实时在线估计,在此基础上完成对SOH参数的预测。验证结果表明,联合估计算法对电池的欧姆电阻和容量有一个较好的估计,进一步提升了电池状态的估计精度。 展开更多
关键词 锂离子电池 荷电状态 健康状态 Sage-Husa滤波 自适应平方根无迹卡尔曼滤波
在线阅读 下载PDF
基于平方根无迹卡尔曼滤波的数字预失真算法 被引量:3
10
作者 宋勇 胡波 李在清 《电讯技术》 北大核心 2011年第11期20-24,共5页
射频功率放大器工作在近饱和点时产生的非线性效应是制约其性能提升的主要因素。提出了一种基于非线性无迹卡尔曼滤波的数字预失真算法,可有效克服此非线性效应的影响。针对预失真算法的状态方程为线性的特点,优化了无迹卡尔曼滤波算法... 射频功率放大器工作在近饱和点时产生的非线性效应是制约其性能提升的主要因素。提出了一种基于非线性无迹卡尔曼滤波的数字预失真算法,可有效克服此非线性效应的影响。针对预失真算法的状态方程为线性的特点,优化了无迹卡尔曼滤波算法以提高运算效率。仿真结果表明,所提算法性能优于传统的基于最小均方的数字预失真算法。 展开更多
关键词 功率放大器 数字预失真 记忆效应 无迹卡尔曼滤波
在线阅读 下载PDF
多策略改进麻雀搜索算法优化无迹卡尔曼滤波方法
11
作者 刘建娟 李志伟 +2 位作者 姬淼鑫 吴豪然 许强伟 《科学技术与工程》 北大核心 2025年第1期227-237,共11页
针对无迹卡尔曼滤波(unscented Kalman filter,UKF)中无迹变换(unscented transform,UT)在状态估计时采样点分布状态控制参数异常对滤波性能的影响问题,提出了一种利用多策略改进麻雀搜索算法(improved sparrow search algorithm,ISSA)... 针对无迹卡尔曼滤波(unscented Kalman filter,UKF)中无迹变换(unscented transform,UT)在状态估计时采样点分布状态控制参数异常对滤波性能的影响问题,提出了一种利用多策略改进麻雀搜索算法(improved sparrow search algorithm,ISSA)对UT中采样点分布状态控制参数进行寻优调整的方法,从而优化Sigma点分布以提高非线性近似效果,改善滤波估计性能。同时针对传统麻雀搜索算法面临的易陷入局部最优和收敛速度慢等问题,首先利用Cubic混沌映射改善初始种群的多样性;其次在发现者阶段引入非线性自适应收敛因子,提高平衡算法在全局探索和局部开发方面的能力;同时在追随者阶段利用小波变异策略,以避免追随者盲目追随而导致算法陷入局部最优;最后利用自适应t分布的扰动能力增强算法的全局搜索能力。通过测试函数对ISSA算法进行仿真实验,结果表明ISSA算法具有更好的收敛性和求解精度,同时验证ISSA优化UKF算法后的仿真结果,表明了ISSA-UKF算法相比于UKF算法的位置均方根误差降低了52.2%,速度均方根误差降低了21.9%,证明了改进方法的有效性和可行性。 展开更多
关键词 无迹卡尔曼滤波 麻雀搜索算法 Cubic混沌映射 非线性自适应收敛因子 小波变异策略
在线阅读 下载PDF
基于自适应无迹卡尔曼滤波的PID转向控制系统设计
12
作者 田雅琴 师旭源 +1 位作者 胡梦辉 王杰鹏 《机床与液压》 北大核心 2025年第12期118-128,共11页
为了避免局部最优解的出现,在灰狼算法中引入了Tent混沌映射初始化种群、非线性收敛因子调整策略、基于精英个体的高斯扰动机制,使灰狼算法的搜索范围得以扩大;搭建了Simulink动力学仿真模型并进行了算法性能模拟,通过观测噪声和过程噪... 为了避免局部最优解的出现,在灰狼算法中引入了Tent混沌映射初始化种群、非线性收敛因子调整策略、基于精英个体的高斯扰动机制,使灰狼算法的搜索范围得以扩大;搭建了Simulink动力学仿真模型并进行了算法性能模拟,通过观测噪声和过程噪声验证了算法的优越性。针对移动机器人转向控制中传统PID存在的超调量大、响应慢及易受干扰等问题,提出一种基于自适应无迹卡尔曼滤波(AUKF)的参数自整定PID控制方法,其优点是无需雅可比矩阵,通过采用无迹变换来处理非线性系统。对4种滤波模型输入噪声,验证了AUKF的抗干扰和滤波能力最佳,其中AUKF相对于UKF的误差绝对值最大缩小了58%,稳定性最大提高了62%。仿真与实验结果表明:该方法显著改善了系统的控制精度、鲁棒性、响应速度及超调量。 展开更多
关键词 无迹卡尔曼滤波 PID控制 转向控制系统 改进灰狼算法 MATLAB仿真
在线阅读 下载PDF
基于改进自适应交互式多模型无迹卡尔曼滤波算法的车辆目标跟踪
13
作者 南奔洋 匡兵 景晖 《科学技术与工程》 北大核心 2025年第11期4605-4611,共7页
为解决传统交互式多模型(interactive multiple model, IMM)算法在车辆目标跟踪中存在模型概率变化不明显和跟踪精度不足问题,提出一种改进的自适应IMM-UKF(unscented Kalman filter)算法。首先采用匀速直线、匀加速直线和匀速转弯来建... 为解决传统交互式多模型(interactive multiple model, IMM)算法在车辆目标跟踪中存在模型概率变化不明显和跟踪精度不足问题,提出一种改进的自适应IMM-UKF(unscented Kalman filter)算法。首先采用匀速直线、匀加速直线和匀速转弯来建立车辆的运动模型,并通过无迹卡尔曼滤波对车辆目标进行跟踪。然后将子模型概率变化率作为IMM算法修正参数,对马尔可夫矩阵主对角线和非主对角线元素采用不同的修正策略。最后设置判定窗修正归一化后的马尔可夫矩阵主对角线元素,以扩大匹配模型的概率。结果表明,改进算法模型概率变化更加明显,位置和速度均方根误差均要小于原有算法,有效地提高了跟踪精度。 展开更多
关键词 目标跟踪 交互式多模型 自适应 马尔可夫矩阵 无迹卡尔曼滤波
在线阅读 下载PDF
含未知输入非线性系统的扩展平方根容积卡尔曼滤波算法
14
作者 鹿子豪 王娜 +2 位作者 林崇 赵克友 董世桂 《科学技术与工程》 北大核心 2024年第14期5892-5900,共9页
针对工程实际应用中存在的未知输入会导致经典的非线性滤波器状态估计精度下降甚至滤波发散的问题,提出了一种基于最小方差无偏估计(minimum variance unbiased estimation,MVUE)准则的扩展平方根容积卡尔曼滤波(extended square-root c... 针对工程实际应用中存在的未知输入会导致经典的非线性滤波器状态估计精度下降甚至滤波发散的问题,提出了一种基于最小方差无偏估计(minimum variance unbiased estimation,MVUE)准则的扩展平方根容积卡尔曼滤波(extended square-root cubature Kalman filter,ESRCKF)算法。首先,结合上一时刻未知输入估计值对状态一步预测值进行修正,得到含未知输入条件下的状态预测值。其次,设计新息并采用加权最小二乘(weighted least squares,WLS)法获取当前时刻未知输入的无偏估计。最后,通过最小化协方差矩阵的迹,同时采用拉格朗日乘子法和舒尔补引理得到系统状态的最小方差无偏估计。仿真结果表明,相比于现有的非线性滤波算法,ESRCKF算法提高了在处理含未知输入非线性系统时的状态估计精度,并能同时实现系统状态和未知输入的最优估计,验证了该算法的有效性。 展开更多
关键词 平方根容积卡尔曼滤波 最小方差无偏估计 加权最小二乘法 状态估计 未知输入估计
在线阅读 下载PDF
无迹卡尔曼滤波算法对UWB/IMU组合定位的研究
15
作者 姚露 聂晓根 +1 位作者 黄汉阳 赵毅 《机械科学与技术》 北大核心 2025年第6期1033-1040,共8页
为提高UWB定位技术在复杂环境工作时的定位精度,提出基于无迹卡尔曼滤波(UKF)算法的UWB/IMU信息融合方法。分别利用UWB定位技术和IMU惯性测量技术解算出机器人的位置信息,采用UKF算法对位置信息数据进行融合,得到机器人的最终位置信息,... 为提高UWB定位技术在复杂环境工作时的定位精度,提出基于无迹卡尔曼滤波(UKF)算法的UWB/IMU信息融合方法。分别利用UWB定位技术和IMU惯性测量技术解算出机器人的位置信息,采用UKF算法对位置信息数据进行融合,得到机器人的最终位置信息,分别应用MATLAB仿真软件和构建的实验平台进行仿真和试验。MATLAB仿真结果表明,UWB定位误差在±1 m之间且波动较大,而UWB/IMU融合定位的误差在±0.25 m以内,基本稳定在±0.2 m;根据实验,在动态定位过程中,采用基于UKF算法的组合定位方法得到的数据误差稳定在4~8 cm之间,而仅采用UWB定位得到的数据误差波动较大,最大达到17 cm,表明采用组合定位的数据误差较小,可以达到厘米级精度,数据稳定。 展开更多
关键词 定位精度 无迹卡尔曼滤波算法 信息融合 MATLAB仿真
在线阅读 下载PDF
无迹卡尔曼滤波及其平方根形式在电力系统动态状态估计中的应用 被引量:46
16
作者 卫志农 孙国强 庞博 《中国电机工程学报》 EI CSCD 北大核心 2011年第16期74-80,共7页
针对扩展卡尔曼滤波(extended Kalman filter,EKF)的不足,将不需要对非线性系统函数进行线性化的无迹卡尔曼滤波(unscented Kalman filter,UKF)方法引入电力系统动态状态估计,采用生成Sigma点数量最少的比例最小偏度单形采样策略进行无... 针对扩展卡尔曼滤波(extended Kalman filter,EKF)的不足,将不需要对非线性系统函数进行线性化的无迹卡尔曼滤波(unscented Kalman filter,UKF)方法引入电力系统动态状态估计,采用生成Sigma点数量最少的比例最小偏度单形采样策略进行无迹变换。以IEEE 14系统为算例,仿真结果表明引入UKF后,估计结果的精度有所提高,但算法的效率较低,且数值稳定性较差。进一步引入平方根形式的UKF(square root UKF,SRUKF)模型,IEEE 14及IEEE 30测试系统的仿真结果证明:在不需要大量牺牲计算时间的同时,算法的数值稳定性得到了改善。表明SRUKF的引入对动态状态估计方法的改进是有效的。 展开更多
关键词 电力系统 动态状态估计 扩展卡尔曼滤波 无迹 卡尔曼滤波 平方根形式的无迹卡尔曼滤波
在线阅读 下载PDF
基于自适应双层无迹卡尔曼滤波神经网络的铝电解电流效率预测模型
17
作者 方小燕 姚立忠 +2 位作者 罗海军 张玉泽 易军 《控制理论与应用》 北大核心 2025年第3期579-589,共11页
针对铝电解过程强干扰和强时变导致模型精确度和稳定性不佳的难题,本文提出一种基于自适应双层无迹卡尔曼滤波神经网络的建模方法.该方法首先构建一种双层无迹卡尔曼滤波神经网络模型,以提高模型对扰动系统的稳定性.具体为:使用双层无... 针对铝电解过程强干扰和强时变导致模型精确度和稳定性不佳的难题,本文提出一种基于自适应双层无迹卡尔曼滤波神经网络的建模方法.该方法首先构建一种双层无迹卡尔曼滤波神经网络模型,以提高模型对扰动系统的稳定性.具体为:使用双层无迹卡尔曼滤波在线更新神经网络的权值和阈值;然后,在双层无迹卡尔曼滤波神经网络的状态变量均方误差中引入约束调节参数;同时,采用梯度下降法自适应调整比例调节参数,将其均方误差约束至较小的范围内,以此来削弱滤波递归计算过程中误差累积对模型的影响;最后,通过铝电解电流效率预测,验证了本文所提方法具有较高的精确度和稳定性. 展开更多
关键词 铝电解 自适应建模 双层无迹卡尔曼滤波 人工神经网络 电流效率
在线阅读 下载PDF
改进型平方根无迹卡尔曼曼滤滤波及其在无轴承永磁同步电机无速度传感器运行中的应应用用 被引量:14
18
作者 许波 朱熀秋 +2 位作者 姬伟 潘伟 孙晓东 《控制理论与应用》 EI CAS CSCD 北大核心 2012年第1期53-58,共6页
平方根无迹卡尔曼滤波(SRUKF)解决了标准无迹卡尔曼滤波(UKF)中由于误差协方差阵负定而引起的滤波发散问题,保证了算法的数值稳定性,但仍存在对模型参数变化的鲁棒性差、收敛速度慢及对突变状态的跟踪能力低等缺陷.因此,本文提出一种改... 平方根无迹卡尔曼滤波(SRUKF)解决了标准无迹卡尔曼滤波(UKF)中由于误差协方差阵负定而引起的滤波发散问题,保证了算法的数值稳定性,但仍存在对模型参数变化的鲁棒性差、收敛速度慢及对突变状态的跟踪能力低等缺陷.因此,本文提出一种改进SRUKF滤波,通过引入时变渐消因子和弱化因子,实时修正滤波增益矩阵和误差协方差平方根矩阵,实现残差序列正交,确保SRUKF滤波保持对目标实际状态的准确跟踪.将该算法在无轴承永磁同步电机无速度传感器矢量控制系统中进行仿真研究.结果表明:改进SRUKF非线性近似精度、数值稳定性及滤波精度更高,在系统状态突变或负载扰动时,鲁棒性更强,能够有效实现转速及转子角度的准确估计,确保转子稳定悬浮运行. 展开更多
关键词 平方根无迹卡尔曼滤波(SRUKF) 改进SRUKF 无轴承永磁同步电机 无速度传感器
在线阅读 下载PDF
惯导初对准中的平方根无轨迹卡尔曼滤波 被引量:3
19
作者 周战馨 高亚楠 陈家斌 《北京理工大学学报》 EI CAS CSCD 北大核心 2005年第11期941-943,1002,共4页
针对无轨迹卡尔曼滤波(UKF)在递推过程中,有些情况下出现状态协方差逐渐失去正定性,导致计算发散现象,对状态协方差进行矩阵分解,在滤波中用其平方根进行计算,保证其正定性.采用平方根无轨迹卡尔曼滤波(SRUKF)对大失准角情况下惯性导航... 针对无轨迹卡尔曼滤波(UKF)在递推过程中,有些情况下出现状态协方差逐渐失去正定性,导致计算发散现象,对状态协方差进行矩阵分解,在滤波中用其平方根进行计算,保证其正定性.采用平方根无轨迹卡尔曼滤波(SRUKF)对大失准角情况下惯性导航系统初始对准非线性ψ角模型进行估计.蒙特卡罗仿真结果表明,SRUKF与UKF在滤波精度和收敛速度上基本一致,SRUKF的数值稳定性优于UKF. 展开更多
关键词 非线性滤波 平方根无轨卡尔曼滤波 惯性导航 初始对准
在线阅读 下载PDF
自适应平方根球型无迹卡尔曼滤波算法 被引量:9
20
作者 叶泽浩 毕红葵 +2 位作者 段敏 曲智国 李凡 《雷达科学与技术》 北大核心 2018年第6期615-621,共7页
针对传统无迹卡尔曼滤波器存在跟踪精度低、数值稳定性差、鲁棒性弱等缺点,提出了一种基于球型无迹变换的自适应平方根UKF滤波算法(Adaptive Square Root UKF Filtering Algorithm Based on Spherical Unscented Transform,ASRS-UKF)。... 针对传统无迹卡尔曼滤波器存在跟踪精度低、数值稳定性差、鲁棒性弱等缺点,提出了一种基于球型无迹变换的自适应平方根UKF滤波算法(Adaptive Square Root UKF Filtering Algorithm Based on Spherical Unscented Transform,ASRS-UKF)。该算法在标准的平方根UKF算法上,首先改用了球型无迹变换对权系数以及sigma点进行计算选取;其次改进了平方根UKF中平方根矩阵的分解方法;同时在预测误差协方差矩阵中引入了自适应衰减因子。最后,通过将该算法同平方根UKF以及强跟踪UKF算法进行仿真对比,结果表明,ASRS-UKF算法在减少计算量、加快计算速度的同时还提高了滤波精度和稳定性,而且对于系统模型匹配不佳的情况下,仍具有良好的跟踪性能。 展开更多
关键词 跟踪 球型无迹变换 自适应 平方根UKF 跟踪性能
在线阅读 下载PDF
上一页 1 2 44 下一页 到第
使用帮助 返回顶部