期刊文献+
共找到180篇文章
< 1 2 9 >
每页显示 20 50 100
含未知输入非线性系统的扩展平方根容积卡尔曼滤波算法
1
作者 鹿子豪 王娜 +2 位作者 林崇 赵克友 董世桂 《科学技术与工程》 北大核心 2024年第14期5892-5900,共9页
针对工程实际应用中存在的未知输入会导致经典的非线性滤波器状态估计精度下降甚至滤波发散的问题,提出了一种基于最小方差无偏估计(minimum variance unbiased estimation,MVUE)准则的扩展平方根容积卡尔曼滤波(extended square-root c... 针对工程实际应用中存在的未知输入会导致经典的非线性滤波器状态估计精度下降甚至滤波发散的问题,提出了一种基于最小方差无偏估计(minimum variance unbiased estimation,MVUE)准则的扩展平方根容积卡尔曼滤波(extended square-root cubature Kalman filter,ESRCKF)算法。首先,结合上一时刻未知输入估计值对状态一步预测值进行修正,得到含未知输入条件下的状态预测值。其次,设计新息并采用加权最小二乘(weighted least squares,WLS)法获取当前时刻未知输入的无偏估计。最后,通过最小化协方差矩阵的迹,同时采用拉格朗日乘子法和舒尔补引理得到系统状态的最小方差无偏估计。仿真结果表明,相比于现有的非线性滤波算法,ESRCKF算法提高了在处理含未知输入非线性系统时的状态估计精度,并能同时实现系统状态和未知输入的最优估计,验证了该算法的有效性。 展开更多
关键词 平方根容积卡尔曼滤波 最小方差无偏估计 加权最小二乘法 状态估计 未知输入估计
在线阅读 下载PDF
基于平方根无迹卡尔曼滤波的锂电池状态估计 被引量:38
2
作者 费亚龙 谢长君 +2 位作者 汤泽波 曾春年 全书海 《中国电机工程学报》 EI CSCD 北大核心 2017年第15期4514-4520,共7页
在充电式混合动力电动汽车(plug-in hybrid electric vehicle,PHEV)和电动汽车(electric vehicle,EV)中,对电池进行精确、可靠的荷电状态估计(state of charge,SOC)非常重要。传统估计方法存在计算量大、估计不精确等缺点,提出一种平方... 在充电式混合动力电动汽车(plug-in hybrid electric vehicle,PHEV)和电动汽车(electric vehicle,EV)中,对电池进行精确、可靠的荷电状态估计(state of charge,SOC)非常重要。传统估计方法存在计算量大、估计不精确等缺点,提出一种平方根无迹卡尔曼滤波(square root unscented Kalman filter,SRUKF)算法对SOC进行实时估计及更新。利用无迹变换(unscented transformation,UT)精确估计系统方程的均值和协方差,使估算值达到二阶精度。利用平方根算法保证状态协方差的半正定性,提高数字计算的稳定性。通过实验对比,验证了该算法的有效性。结果表明,该方法可使状态估计值具有较小的误差和快速跟随性,满足了SOC估计的实际需求。 展开更多
关键词 锂电池 荷电状态 平方根无迹卡尔曼滤波 无迹 变换 平方根算法
在线阅读 下载PDF
非线性自适应平方根无迹卡尔曼滤波方法研究 被引量:19
3
作者 张玉峰 周奇勋 +1 位作者 周勇 张举中 《计算机工程与应用》 CSCD 北大核心 2016年第16期36-40,共5页
针对带有附加噪声且噪声特性未知的系统,提出了一种非线性卡尔曼滤波方法——自适应平方根无迹卡尔曼滤波(NASRUKF)方法,该方法基于平方根滤波的思想,对传统的Sage-Husa自适应滤波算法进行了改进,并与平方根无迹卡尔曼滤波(SRUKF)算法... 针对带有附加噪声且噪声特性未知的系统,提出了一种非线性卡尔曼滤波方法——自适应平方根无迹卡尔曼滤波(NASRUKF)方法,该方法基于平方根滤波的思想,对传统的Sage-Husa自适应滤波算法进行了改进,并与平方根无迹卡尔曼滤波(SRUKF)算法相结合用来进行非线性滤波。该算法能直接对非线性系统的状态方差阵和噪声方差阵的平方根进行递推与估算,确保状态和噪声方差阵的对称性和非负定性。将所提方法通过计算机仿真技术与SRUKF算法进行对比,结果表明NASRUKF方法在滤波精度、稳定性和自适应能力方面均优于SRUKF方法。 展开更多
关键词 非线性自适应平方根无迹卡尔曼滤波方法(NASRUKF) 卡尔曼滤波 平方根无迹卡尔曼滤波(SRUKF) Sage-Husa滤波 非线性滤波 预估
在线阅读 下载PDF
平方根采样点卡尔曼滤波在磷酸铁锂电池组荷电状态估算中的应用 被引量:27
4
作者 张金龙 佟微 +1 位作者 漆汉宏 张纯江 《中国电机工程学报》 EI CSCD 北大核心 2016年第22期6246-6253,共8页
荷电状态(state of charge,SOC)估算技术是锂电池管理系统中最重要的功能之一。针对磷酸铁锂电池组展开研究,以准确估计电池组中各单体荷电状态为目的,首先采用一阶戴维南(Thevenin)模型结合安时法建立综合电池模型;采用一种平方根采样... 荷电状态(state of charge,SOC)估算技术是锂电池管理系统中最重要的功能之一。针对磷酸铁锂电池组展开研究,以准确估计电池组中各单体荷电状态为目的,首先采用一阶戴维南(Thevenin)模型结合安时法建立综合电池模型;采用一种平方根采样点卡尔曼滤波(square root sigma point Kalman filter,SRSPKF)方法,配合在线递推最小二乘(recursive least square,RLS)算法,同时实现对电池等效模型参数的辨识以及对电池荷电状态的估算。理论上讲,SRSPKF算法使系统状态直接以其方差的平方根形式传播,可显著降低常规Sigma点卡尔曼滤波器(sigma points Kalman filter,SPKF)算法的复杂性。实验结果表明,相对SPKF而言,SRSPKF具有更强的状态估计误差抑制能力,采用SRSPKF可以获得比SPKF更准确的SOC估计结果。 展开更多
关键词 磷酸铁锂电池 等效模型 荷电状态估算 平方根采样点卡尔曼滤波
在线阅读 下载PDF
无迹卡尔曼滤波及其平方根形式在电力系统动态状态估计中的应用 被引量:46
5
作者 卫志农 孙国强 庞博 《中国电机工程学报》 EI CSCD 北大核心 2011年第16期74-80,共7页
针对扩展卡尔曼滤波(extended Kalman filter,EKF)的不足,将不需要对非线性系统函数进行线性化的无迹卡尔曼滤波(unscented Kalman filter,UKF)方法引入电力系统动态状态估计,采用生成Sigma点数量最少的比例最小偏度单形采样策略进行无... 针对扩展卡尔曼滤波(extended Kalman filter,EKF)的不足,将不需要对非线性系统函数进行线性化的无迹卡尔曼滤波(unscented Kalman filter,UKF)方法引入电力系统动态状态估计,采用生成Sigma点数量最少的比例最小偏度单形采样策略进行无迹变换。以IEEE 14系统为算例,仿真结果表明引入UKF后,估计结果的精度有所提高,但算法的效率较低,且数值稳定性较差。进一步引入平方根形式的UKF(square root UKF,SRUKF)模型,IEEE 14及IEEE 30测试系统的仿真结果证明:在不需要大量牺牲计算时间的同时,算法的数值稳定性得到了改善。表明SRUKF的引入对动态状态估计方法的改进是有效的。 展开更多
关键词 电力系统 动态状态估计 扩展卡尔曼滤波 无迹 卡尔曼滤波 平方根形式的无迹卡尔曼滤波
在线阅读 下载PDF
自适应CS模型的强跟踪平方根容积卡尔曼滤波算法 被引量:24
6
作者 张浩为 谢军伟 +2 位作者 葛佳昂 宗彬锋 路文龙 《系统工程与电子技术》 EI CSCD 北大核心 2019年第6期1186-1194,共9页
对于目标跟踪过程中的强机动问题,基于当前统计(current statistical,CS)模型和改进的强跟踪平方根容积卡尔曼滤波器(square-root cubature Kalman filter,SCKF),提出新的跟踪算法。在CS模型和改进输入估计算法的基础上,引入加加速度估... 对于目标跟踪过程中的强机动问题,基于当前统计(current statistical,CS)模型和改进的强跟踪平方根容积卡尔曼滤波器(square-root cubature Kalman filter,SCKF),提出新的跟踪算法。在CS模型和改进输入估计算法的基础上,引入加加速度估计,使得状态过程噪声与状态协方差矩阵相联系,实现模型的自适应调整。从正交性原理出发,重新确定了渐消因子的引入位置,并提出了新的渐消因子计算形式,以克服传统渐消因子在雷达量测坐标系中的失效问题,从而构造强跟踪平方根容积卡尔曼滤波器。另外,构造强机动检测函数,利用SCKF的输出来调整自适应CS模型中的机动频率。仿真结果表明,相比基于CS模型的多重渐消因子强跟踪SCKF算法、改进CS模型的强跟踪SCKF(SCKF-STF)算法和交互式多模型(interacting multiple-model,IMM)SCKF算法,所提算法具有更佳的目标机动适应性和跟踪精度;相比于IMM-SCKF算法,实时性有明显改善。 展开更多
关键词 机动目标跟踪 当前统计模型 平方根容积卡尔曼滤波 强跟踪
在线阅读 下载PDF
基于平方根容积卡尔曼滤波的发电机动态状态估计 被引量:18
7
作者 安军 杨振瑞 +2 位作者 周毅博 桂建忠 石岩 《电工技术学报》 EI CSCD 北大核心 2017年第12期234-240,共7页
发电机动态状态估计是电力系统动态安全分析的重要内容。针对容积卡尔曼滤波(CKF)在迭代中协方差阵不对称或非正定导致的估计精度下降甚至滤波发散问题,利用平方根滤波(SRF)能确保协方差阵非负定和数值稳定性方面的优势,提出基于平方根... 发电机动态状态估计是电力系统动态安全分析的重要内容。针对容积卡尔曼滤波(CKF)在迭代中协方差阵不对称或非正定导致的估计精度下降甚至滤波发散问题,利用平方根滤波(SRF)能确保协方差阵非负定和数值稳定性方面的优势,提出基于平方根容积卡尔曼滤波(SRCKF)的发电机动态状态估计方法,并给出了计算步骤。最后,利用仿真系统和实际系统比较了SRCKF、CKF和无迹卡尔曼滤波(UKF)三种算法的估计性能,证明了SRCKF算法能够解决CKF滤波中因协方差阵非正定导致的滤波发散问题;同时SRCKF算法在计算效率、滤波精度和数值稳定性方面均优于CKF和UKF算法。 展开更多
关键词 容积卡尔曼滤波 非负定 数值稳定性 平方根容积卡尔曼滤波
在线阅读 下载PDF
分布式驱动电动汽车的平方根容积卡尔曼滤波状态观测 被引量:6
8
作者 金贤建 殷国栋 +2 位作者 陈南 陈建松 张宁 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第5期992-996,共5页
针对车辆动力学系统状态估计的非线性问题,引入非线性动态Dugoff轮胎模型来构建包括纵向、侧向、横摆和侧倾等8自由度的非线性车辆动力学状态估计系统.在融合车载多传感器信息的基础上设计了车辆动力学的平方根容积卡尔曼非线性滤波状... 针对车辆动力学系统状态估计的非线性问题,引入非线性动态Dugoff轮胎模型来构建包括纵向、侧向、横摆和侧倾等8自由度的非线性车辆动力学状态估计系统.在融合车载多传感器信息的基础上设计了车辆动力学的平方根容积卡尔曼非线性滤波状态观测器,对质心侧偏角、轮胎侧向力等关键状态进行观测.在Matlab/Simulink环境中搭建了Simulink-Carsim分布式驱动电动汽车系统状态估计联合仿真平台,采用双移线工况对观测器的可行性和有效性进行仿真验证.结果表明:传统的扩展式卡尔曼滤波状态观测器在车辆经历高侧向加速度过程中的观测值大幅偏离车辆运行状态的真实值,而设计的平方根容积卡尔曼非线性滤波状态观测器在整个双移线仿真工况下观测结果平稳,能实时反映车辆动力学系统的真实非线性运行状态,具有更小的观测误差和更高的观测精度. 展开更多
关键词 电动汽车 状态观测 平方根容积卡尔曼滤波 车辆动力学
在线阅读 下载PDF
平方根容积卡尔曼滤波概率假设密度算法在移动机器人同时定位与地图构建中的应用 被引量:11
9
作者 闫德立 宋永端 +1 位作者 宋宇 康轶非 《控制理论与应用》 EI CAS CSCD 北大核心 2014年第8期1009-1017,共9页
针对杂波环境或数据关联模糊环境下移动机器人同时定位与地图构建(SLAM)的问题,本文提出平方根容积卡尔曼滤波概率假设密度(SRCKF-PHD)SLAM算法,该算法的主要特点在于:1)采用容积规则方法计算非线性函数高斯权重积分以及机器人位姿粒子... 针对杂波环境或数据关联模糊环境下移动机器人同时定位与地图构建(SLAM)的问题,本文提出平方根容积卡尔曼滤波概率假设密度(SRCKF-PHD)SLAM算法,该算法的主要特点在于:1)采用容积规则方法计算非线性函数高斯权重积分以及机器人位姿粒子权重,达到改善位姿估计性能的目的;2)在高斯混合概率假设密度更新过程中,将平方根容积卡尔曼滤波应用于高斯项权重更新及观测似然计算中,保证了协方差矩阵的对称性和半正定性,提高了地图估计的精度和稳定性.通过仿真实验及CarPark数据集,将提出算法与RB-PHD-SLAM算法进行对比,结果表明该算法对机器人位姿估计精度及地图估计精度的提高是有效的. 展开更多
关键词 移动机器人 同时定位与地图构建 平方根容积卡尔曼滤波 概率假设密度
在线阅读 下载PDF
基于四元数平方根容积卡尔曼滤波的姿态估计 被引量:6
10
作者 钱华明 黄蔚 +1 位作者 葛磊 张广拓 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2013年第5期645-649,共5页
针对飞行器姿态确定中乘性扩展卡尔曼滤波(MEKF,Multiplicative Extend-ed Kalman Filter)在较大初始姿态误差角情况下存在估计精度低及收敛速度慢的问题,提出了一种四元数平方根容积卡尔曼滤波(QSCKF,Quaternion Square-root Cubature ... 针对飞行器姿态确定中乘性扩展卡尔曼滤波(MEKF,Multiplicative Extend-ed Kalman Filter)在较大初始姿态误差角情况下存在估计精度低及收敛速度慢的问题,提出了一种四元数平方根容积卡尔曼滤波(QSCKF,Quaternion Square-root Cubature Kalman Filter)算法.在推导姿态确定系统四元数非线性误差模型的基础上,采用容积数值积分理论来计算非线性函数的均值与方差,同时使用平方根的形式来提高数值稳定性;针对四元数规范化问题,采用拉格朗日代价函数法求解四元数加权均值.仿真结果表明:在初始姿态误差较大的情况下,该算法相比较于MEKF以及无迹四元数估计法(USQUE,Unscented Quaternion Estimator),估计精度高且收敛速度快,滤波稳定性好,同时估计时间比USQUE缩短了1/3. 展开更多
关键词 平方根容积卡尔曼滤波 四元数 拉格朗日代价函数法 姿态估计
在线阅读 下载PDF
强跟踪自适应平方根容积卡尔曼滤波算法 被引量:24
11
作者 徐树生 林孝工 李新飞 《电子学报》 EI CAS CSCD 北大核心 2014年第12期2394-2400,共7页
针对强跟踪滤波器(STF)的理论局限性及不良测量导致的滤波性能下降问题,提出了一种强跟踪自适应平方根容积卡尔曼滤波(SRCKF)算法.利用新息协方差匹配原理,建立对不良测量具有鲁棒性的自适应SRCKF.基于STF的理论框架,采用自适应SRCKF代... 针对强跟踪滤波器(STF)的理论局限性及不良测量导致的滤波性能下降问题,提出了一种强跟踪自适应平方根容积卡尔曼滤波(SRCKF)算法.利用新息协方差匹配原理,建立对不良测量具有鲁棒性的自适应SRCKF.基于STF的理论框架,采用自适应SRCKF代替扩展卡尔曼滤波构建强跟踪自适应SRCKF.该算法兼具STF与自适应SRCKF的优点,在系统同时存在模型不确定性及不良测量时具有良好的滤波性能.仿真验证了所建算法的有效性. 展开更多
关键词 强跟踪滤波 平方根容积卡尔曼滤波 自适应滤波 鲁棒性
在线阅读 下载PDF
强跟踪平方根容积卡尔曼滤波SLAM算法 被引量:16
12
作者 戴雪梅 郎朗 陈孟元 《电子测量与仪器学报》 CSCD 北大核心 2015年第10期1493-1499,共7页
针对移动机器人在状态突变时同步定位与地图构建精度下降的问题,提出了强跟踪平方根容积卡尔曼滤波SLAM算法(STF-SRCKF-SLAM)。该算法首先根据移动机器人的运动学模型和观测模型进行预测,然后通过直接传播误差协方差矩阵的平方根因子进... 针对移动机器人在状态突变时同步定位与地图构建精度下降的问题,提出了强跟踪平方根容积卡尔曼滤波SLAM算法(STF-SRCKF-SLAM)。该算法首先根据移动机器人的运动学模型和观测模型进行预测,然后通过直接传播误差协方差矩阵的平方根因子进行更新,使计算复杂度大大降低。同时在预测和更新过程中引入时变渐消因子,实时调整相应数据权值,达到提高机器人定位精度的目的。仿真实验结果表明,相比容积卡尔曼滤波SLAM算法(CKF-SLAM)、平方根容积卡尔曼滤波SLAM算法(SRCKF-SALM),STF-SRCKF-SLAM算法均方根误差降低了26.25%和13.8%,运行时间减少了1.83%和1.21%,表明该算法在SLAM性能上更优。 展开更多
关键词 移动机器人 同步定位与地图构建 容积卡尔曼滤波 平方根滤波 强跟踪
在线阅读 下载PDF
基于平方根中心差分卡尔曼滤波的大方位失准角初始对准 被引量:11
13
作者 郝燕玲 杨峻巍 +1 位作者 陈亮 郝金会 《中国惯性技术学报》 EI CSCD 北大核心 2011年第2期180-184,189,共6页
基于大方位失准角条件下捷联惯导系统误差模型的非线性特点,采用非线性滤波方法进行初始对准。扩展卡尔曼滤波存在精度低,且需要计算雅可比矩阵等不足,而中心差分卡尔曼滤波在递推过程中具有计算量大,数值不稳定等缺点。针对上述问题采... 基于大方位失准角条件下捷联惯导系统误差模型的非线性特点,采用非线性滤波方法进行初始对准。扩展卡尔曼滤波存在精度低,且需要计算雅可比矩阵等不足,而中心差分卡尔曼滤波在递推过程中具有计算量大,数值不稳定等缺点。针对上述问题采用了一种改进的中心差分滤波算法——平方根中心差分卡尔曼滤波。仿真结果表明,与扩展卡尔曼滤波相比,平方根中心差分卡尔曼滤波对方位失准角的对准精度由24.5′提高到5.83′,并且避免了计算雅可比矩阵带来的不便;与中心差分滤波相比,平方根中心差分卡尔曼滤波在保证滤波精度的同时,降低了滤波的计算量,提高了滤波的数值稳定性。 展开更多
关键词 大方位失准角 初始对准 平方根中心差分卡尔曼滤波 扩展卡尔曼滤波
在线阅读 下载PDF
基于5阶降维平方根-容积卡尔曼滤波的动基座对准应用研究 被引量:4
14
作者 黄湘远 汤霞清 +1 位作者 武萌 吴伟胜 《兵工学报》 EI CAS CSCD 北大核心 2016年第2期219-225,共7页
为提高动基座下捷联惯导系统的对准精度、数值稳定性和减小计算量,将5阶容积卡尔曼滤波(CKF)、降维算法、多次离散和平方根(SR)滤波结合起来,形成5阶降维SR-CKF非线性对准方案。为减小5阶CKF的计算量,建立非线性-线性分离的系统模型,引... 为提高动基座下捷联惯导系统的对准精度、数值稳定性和减小计算量,将5阶容积卡尔曼滤波(CKF)、降维算法、多次离散和平方根(SR)滤波结合起来,形成5阶降维SR-CKF非线性对准方案。为减小5阶CKF的计算量,建立非线性-线性分离的系统模型,引入降维算法;为提高1阶龙格-库塔法的逼近精度,设计多次离散和时间更新的滤波框架;为提高数值稳定性,推导了5阶降维SR-CKF;比较常规3阶SR-CKF、5阶CKF和5阶降维SR-CKF的各项特性。实车动基座对准实验结果表明:该方案对准精度高、数值稳定性强、计算量小,满足应用需要。 展开更多
关键词 兵器科学与技术 容积卡尔曼滤波 降维 平方根滤波 多次离散
在线阅读 下载PDF
强跟踪平方根容积卡尔曼滤波和自回归模型融合的故障预测 被引量:6
15
作者 杜占龙 李小民 +1 位作者 郑宗贵 毛琼 《控制理论与应用》 EI CAS CSCD 北大核心 2014年第8期1047-1052,共6页
为了解决非线性系统中不可测量参数的预测问题,提出一种带有次优渐消因子的强跟踪平方根容积卡尔曼滤波(STSCKF)和自回归(AR)模型相结合的故障预测方法.利用AR模型时间序列预测法预测未来时刻的测量值,将预测的测量值作为STSCKF的测量变... 为了解决非线性系统中不可测量参数的预测问题,提出一种带有次优渐消因子的强跟踪平方根容积卡尔曼滤波(STSCKF)和自回归(AR)模型相结合的故障预测方法.利用AR模型时间序列预测法预测未来时刻的测量值,将预测的测量值作为STSCKF的测量变量,从而将预测问题转化为滤波估计问题.STSCKF通过在预测误差方差阵的均方根中引入渐消因子调节滤波过程中的增益矩阵,克服了故障参数变化函数未知情况下普通SCKF跟踪故障参数缓慢甚至失效的局限性,使得STSCKF能较好地预测故障参数的发展趋势.连续搅拌反应釜(CSTR)仿真结果表明,STSCKF的预测精度高于普通SCKF和强跟踪无迹卡尔曼滤波(STUKF),验证了方法的有效性. 展开更多
关键词 强跟踪滤波 非线性滤波 状态和参数联合估计 平方根容积卡尔曼滤波(SCKF) 故障预测
在线阅读 下载PDF
平方根求容积卡尔曼滤波的组合导航算法 被引量:6
16
作者 管冰蕾 汤显峰 葛泉波 《中国航海》 CSCD 北大核心 2011年第4期1-4,共4页
以全球定位系统与航位推算(GPS/DR)相结合的组合导航系统为研究对象。为解决在GPS/DR组合导航研究中传统扩展卡尔曼滤波(EKF)算法的滤波精度和稳定性差问题,引入了平方根求容积卡尔曼滤波算法。作为一类sigma点滤波方法,SCKF有效避免了... 以全球定位系统与航位推算(GPS/DR)相结合的组合导航系统为研究对象。为解决在GPS/DR组合导航研究中传统扩展卡尔曼滤波(EKF)算法的滤波精度和稳定性差问题,引入了平方根求容积卡尔曼滤波算法。作为一类sigma点滤波方法,SCKF有效避免了EKF计算雅可比矩阵,提高了估计精度。仿真结果表明,对于船用GPS/DR组合导航问题,该算法能获得更好的性能指标,更符合实际船用组合导航要求。 展开更多
关键词 船舶、舰船工程 海事智能交通 船舶组合导航 非线性滤波 平方根求容积卡尔曼滤波
在线阅读 下载PDF
基于强跟踪平方根容积卡尔曼滤波的GNSS信号跟踪环路设计 被引量:10
17
作者 程向红 张晶晶 《中国惯性技术学报》 EI CSCD 北大核心 2021年第6期740-745,共6页
在GNSS接收机信号跟踪阶段,跟踪环路容易因为载体高速运动导致环路失锁。为了提高跟踪环路的动态性能和精度,提出了一种基于平方根容积卡尔曼滤波和强跟踪滤波的跟踪环路。在传统跟踪环路的基础上,以同相、正交各支路输出为观测量,在平... 在GNSS接收机信号跟踪阶段,跟踪环路容易因为载体高速运动导致环路失锁。为了提高跟踪环路的动态性能和精度,提出了一种基于平方根容积卡尔曼滤波和强跟踪滤波的跟踪环路。在传统跟踪环路的基础上,以同相、正交各支路输出为观测量,在平方根容积卡尔曼滤波中引入渐消因子以提高跟踪环路的鲁棒性,对伪码相位和载波多普勒频率作统一估计。动态仿真试验结果表明,相比于二阶锁频环辅助三阶锁相环,所提出的跟踪环路定位、定速误差减小了25%以上,可以为后续的导航解算等模块提供更为可靠的观测量。 展开更多
关键词 GNSS信号跟踪环路 平方根容积卡尔曼滤波 强跟踪滤波
在线阅读 下载PDF
惯导初对准中的平方根无轨迹卡尔曼滤波 被引量:3
18
作者 周战馨 高亚楠 陈家斌 《北京理工大学学报》 EI CAS CSCD 北大核心 2005年第11期941-943,1002,共4页
针对无轨迹卡尔曼滤波(UKF)在递推过程中,有些情况下出现状态协方差逐渐失去正定性,导致计算发散现象,对状态协方差进行矩阵分解,在滤波中用其平方根进行计算,保证其正定性.采用平方根无轨迹卡尔曼滤波(SRUKF)对大失准角情况下惯性导航... 针对无轨迹卡尔曼滤波(UKF)在递推过程中,有些情况下出现状态协方差逐渐失去正定性,导致计算发散现象,对状态协方差进行矩阵分解,在滤波中用其平方根进行计算,保证其正定性.采用平方根无轨迹卡尔曼滤波(SRUKF)对大失准角情况下惯性导航系统初始对准非线性ψ角模型进行估计.蒙特卡罗仿真结果表明,SRUKF与UKF在滤波精度和收敛速度上基本一致,SRUKF的数值稳定性优于UKF. 展开更多
关键词 非线性滤波 平方根无轨迹卡尔曼滤波 惯性导航 初始对准
在线阅读 下载PDF
基于平方根容积卡尔曼滤波的RSSI定位参数估计算法 被引量:4
19
作者 刘颖 苏军峰 朱明强 《系统仿真学报》 CAS CSCD 北大核心 2014年第1期119-124,共6页
室内无线定位时由于复杂环境多径效应的影响,接收节点接收到的信号强度与发送节点到接收节点的距离之间没有一致的变化关系,这导致接收信号强度指示(RSSI)定位方法在室内环境下会存在较大的误差。提出一种基于平方根容积卡尔曼滤波的RSS... 室内无线定位时由于复杂环境多径效应的影响,接收节点接收到的信号强度与发送节点到接收节点的距离之间没有一致的变化关系,这导致接收信号强度指示(RSSI)定位方法在室内环境下会存在较大的误差。提出一种基于平方根容积卡尔曼滤波的RSSI参数估计算法,该算法将RSSI定位问题转变为非线性方程组的参数估计问题,使用平方根容积卡尔曼滤波(SCKF)对目标位置和无线信道衰减参数同时进行估计,并利用信道参数动态变化实时修正估计的定位节点坐标。实验结果表明,本文提出的基于SCKF的目标位置和无线信道参数估计算法相比于传统的最小二乘曲线拟合的RSSI定位方法,能够有效提高室内无线定位的精度。 展开更多
关键词 室内定位 接收信号强度指示(RSSI) 平方根容积卡尔曼滤波(SCKF) 定位误差
在线阅读 下载PDF
平方根无迹卡尔曼滤波作球面变换的SOC估计 被引量:2
20
作者 何俊儒 王洪诚 +1 位作者 杨欣荣 王蕾 《电源技术》 CAS CSCD 北大核心 2018年第1期114-118,共5页
针对现有的电池荷电状态(SOC)估计方法存在计算推导过程复杂以及线性化精度低的缺点,提出了一种新的基于平方根无迹卡尔曼滤波在单位超球体中作球面变换的锂电池SOC估计方法。这种方法无需对非线性模型线性化且与传统的无迹卡尔曼滤波相... 针对现有的电池荷电状态(SOC)估计方法存在计算推导过程复杂以及线性化精度低的缺点,提出了一种新的基于平方根无迹卡尔曼滤波在单位超球体中作球面变换的锂电池SOC估计方法。这种方法无需对非线性模型线性化且与传统的无迹卡尔曼滤波相比,通过球面变换得到的Sigma点也更少,从而降低了计算要求。修正了电池的二阶等效电路模型,然后给出了所提出估计方法的具体步骤。最后,通过实验对估计方法进行了验证,分析了所提出的方法在SOC估计精度和鲁棒性方面的性能。实验表明,所提出的估计方法能顺利地完成电池SOC的精确估计,估计误差最大仅为4.98%,估计精度受参数变化影响小,具有一定的鲁棒性。 展开更多
关键词 锂电池 二阶等效电路模型 SOC 平方根无迹卡尔曼滤波 球面变换
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部