期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于李雅普诺夫函数的三相有源电力滤波器控制策略 被引量:13
1
作者 魏艳迪 张勇 程新功 《电力自动化设备》 EI CSCD 北大核心 2012年第1期107-111,共5页
基于开关函数并采用dq方法对有源电力滤波器系统进行建模,提出了一种基于李雅普诺夫函数理论的新型控制方法。该方法谐波检测环节简单,计算量少;所提出的控制策略不依靠电路参数;计算过程中可消除耦合,省去了PI控制器解耦环节,使电路结... 基于开关函数并采用dq方法对有源电力滤波器系统进行建模,提出了一种基于李雅普诺夫函数理论的新型控制方法。该方法谐波检测环节简单,计算量少;所提出的控制策略不依靠电路参数;计算过程中可消除耦合,省去了PI控制器解耦环节,使电路结构简化;考虑参考值不精确对系统的影响,并根据提出的平均误差指标,共同确定控制参数的取值范围,使系统控制达到全局稳定。仿真结果表明基于李雅普诺夫函数的有源电力滤波器具有良好的补偿效果。 展开更多
关键词 有源电力滤波器 李雅普诺夫函数 dq变换 平均误差指标 控制 仿真
在线阅读 下载PDF
Extreme air pollution events:Modeling and prediction
2
作者 周松梅 邓启红 刘蔚巍 《Journal of Central South University》 SCIE EI CAS 2012年第6期1668-1672,共5页
In order to get prepared for the coming extreme pollution events and minimize their harmful impacts, the first and most important step is to predict their possible intensity in the future. Firstly, the generalized Par... In order to get prepared for the coming extreme pollution events and minimize their harmful impacts, the first and most important step is to predict their possible intensity in the future. Firstly, the generalized Pareto distribution (GPD) in extreme value theory was used to fit the extreme pollution concentrations of three main pollutants: PM10, NO2 and SO:, from 2005 to 2010 in Changsha, China. Secondly, the prediction results were compared with actual data by a scatter plot. Four statistical indicators: EMA (mean absolute error), ERMS (root mean square error), IA (index of agreement) and R2 (coefficient of determination) were used to evaluate the goodness-of-fit as well. Thirdly, the return levels corresponding to different return periods were calculated by the fitted distributions. The fitting results show that the distribution of PM10 and SO2 belongs to exponential distribution with a short tail while that of the NOe belongs to beta distribution with a bounded tail. The scatter plot and four statistical indicators suggest that GPD agrees well with the actual data. Therefore, the fitted distribution is reliable to predict the return levels corresponding to different return periods. The predicted return levels suggest that the intensity of coming pollution events for PM10 and SO2 will be even worse in the future, which means people have to get enough preparation for them. 展开更多
关键词 extreme pollution event generalized Pareto distribution return level return period
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部