期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于混合预测模型的船舶海水冷却系统状态参数预测
被引量:
5
1
作者
孙晓磊
邹永久
+1 位作者
张鹏
张跃文
《舰船科学技术》
北大核心
2018年第8期104-109,共6页
为了提高船舶海水冷却系统状态参数的预测精度,提出了自回归滑动平均线性子模型和BP神经网络非线性子模型相结合的海水冷却系统状态参数混合预测模型。介绍混合预测模型的建模过程以及预测流程,选取"育鲲轮"海水冷却系统5天...
为了提高船舶海水冷却系统状态参数的预测精度,提出了自回归滑动平均线性子模型和BP神经网络非线性子模型相结合的海水冷却系统状态参数混合预测模型。介绍混合预测模型的建模过程以及预测流程,选取"育鲲轮"海水冷却系统5天状态参数作为训练样本输入到混合预测模型,对第6天状态参数进行预测,将混合预测模型的预测值分别与自回归滑动平均预测模型预测值、实际观测值对比并运用平均绝对百分比误差法进行验证,结果表明搭建的混合预测模型可以提高海水冷却系统状态参数的预测精度,具有良好的预测能力。
展开更多
关键词
海水冷却系统
自回归滑动
平均
模型
BP神经网络
混合预测模型
平均绝对百分比误
差法
在线阅读
下载PDF
职称材料
题名
基于混合预测模型的船舶海水冷却系统状态参数预测
被引量:
5
1
作者
孙晓磊
邹永久
张鹏
张跃文
机构
大连海事大学轮机工程学院
出处
《舰船科学技术》
北大核心
2018年第8期104-109,共6页
基金
中国船级社资助项目(9215294)
文摘
为了提高船舶海水冷却系统状态参数的预测精度,提出了自回归滑动平均线性子模型和BP神经网络非线性子模型相结合的海水冷却系统状态参数混合预测模型。介绍混合预测模型的建模过程以及预测流程,选取"育鲲轮"海水冷却系统5天状态参数作为训练样本输入到混合预测模型,对第6天状态参数进行预测,将混合预测模型的预测值分别与自回归滑动平均预测模型预测值、实际观测值对比并运用平均绝对百分比误差法进行验证,结果表明搭建的混合预测模型可以提高海水冷却系统状态参数的预测精度,具有良好的预测能力。
关键词
海水冷却系统
自回归滑动
平均
模型
BP神经网络
混合预测模型
平均绝对百分比误
差法
Keywords
seawater cooling system
ARMA model
BP neural network
hybrid prediction model
MAPE
分类号
U664.814 [交通运输工程—船舶及航道工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于混合预测模型的船舶海水冷却系统状态参数预测
孙晓磊
邹永久
张鹏
张跃文
《舰船科学技术》
北大核心
2018
5
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部