期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合注意力门控机制的大场景点云语义分割 被引量:1
1
作者 王蕾 朱芬芬 +1 位作者 李金萍 刘华 《激光与红外》 CAS CSCD 北大核心 2023年第11期1785-1792,共8页
室外大场景激光点云语义分割已成为3D场景理解、环境感知的关键性技术,在自动驾驶、智能机器人和增强现实(AR)等领域应用广泛。然而大场景的激光点云具有多目标、几何结构复杂,不同地物尺度变化大等特点,使得在稀疏的小目标点云(例如行... 室外大场景激光点云语义分割已成为3D场景理解、环境感知的关键性技术,在自动驾驶、智能机器人和增强现实(AR)等领域应用广泛。然而大场景的激光点云具有多目标、几何结构复杂,不同地物尺度变化大等特点,使得在稀疏的小目标点云(例如行人、摩托车等)上的分割性能较低。针对上述问题,本文提出一种融合注意力门控机制的室外点云语义分割算法,设计由注意力机制和多尺度上下文特征融合组成的注意力门控单元,提高对激光点云细粒度特征的表达,降低随机降采样过程中点云几何结构特征丢失程度,从而增强了网络对弱小目标的特征获取能力;同时设计基于共享MLP的平均池化单元,进一步简化自注意力局部特征聚合模块,有效地加速网络收敛,能高效地实现大场景点云的语义分割。本文方法在自动驾驶场景室外激光点云数据集SemanticKITTI上的实验表明,与文献RandLA-Net相比,收敛速度提升48.3%,平均交并比(mIoU)由53.9%提升至54.5%,提高0.6%,尤其是在小目标上交并比(IoU)均有明显提高,person类和motorcycle类的交并比分别提高0.8%和5.4%。 展开更多
关键词 大场景激光点云 语义分割 随机降采样 平均池化单元 注意力门控单元 多尺度特征融合
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部