期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于AED-CEEMD-Transformer的锂离子电池健康状态估计 被引量:8
1
作者 陈锐 丁凯 +6 位作者 祖连兴 许青松 王宗标 罗大思 苏敬江 胡圣 毛冀龙 《储能科学与技术》 CAS CSCD 北大核心 2023年第10期3242-3253,共12页
锂电池健康状态(state of health,SOH)的精确预测评估对电池设备安全稳定运行极为重要,通过对SOH的快速准确预测,可以提高电池设备的安全性并降低出现故障的风险。针对难以精确预测锂离子电池SOH的问题,本文采用电池容量作为SOH的指标,... 锂电池健康状态(state of health,SOH)的精确预测评估对电池设备安全稳定运行极为重要,通过对SOH的快速准确预测,可以提高电池设备的安全性并降低出现故障的风险。针对难以精确预测锂离子电池SOH的问题,本文采用电池容量作为SOH的指标,提出一种利用平均欧几里得距离(average euclidean distance,AED)和互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)方法建立基于Transformer网络结构的锂离子电池健康状态估计算法。首先,我们利用AED评估电池数据库中的电池与待预测电池初期循环容量之间的相似度,并选出具有相似容量退化趋势的电池作为训练集以提高模型的训练速度,然后利用CEEMD方法将电池容量曲线分解为容量再生部分以及退化趋势部分,将各个分量分别使用Transformer网络来建立锂电池退化模型,进而得到锂离子电池的SOH预测结果。本文使用分别来自斯坦福大学与马里兰大学的两个具有不同充放电策略与不同测试环境下的锂离子电池数据集来验证了所提出的电池预测算法的准确性。本文所提模型的均方根误差均能控制在4%以内,具有较好的精确性,并通过与基于LSTM、RNN、GRU的常用锂离子电池健康状态估计算法结果的比较,验证了所提出估计方法的优越性。 展开更多
关键词 锂离子电池 Transformer网络 电池健康状态 平均欧几里得距离 联合互补集合经验模态分解
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部