期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于一维深度卷积生成对抗网络的钢轨波磨识别方法
被引量:
1
1
作者
谢烨
赵闻强
+1 位作者
杨红运
包学海
《铁道建筑》
北大核心
2022年第12期62-66,71,共6页
实际工程中钢轨波磨数据难以大量获取,无法构建庞大数据集进行智能诊断模型训练。针对这一问题,本文提出了一种基于一维深度卷积生成对抗网络的钢轨波磨识别方法。首先使用一维生成对抗网络生成与实际波磨振动信号结构相同的伪样本,对...
实际工程中钢轨波磨数据难以大量获取,无法构建庞大数据集进行智能诊断模型训练。针对这一问题,本文提出了一种基于一维深度卷积生成对抗网络的钢轨波磨识别方法。首先使用一维生成对抗网络生成与实际波磨振动信号结构相同的伪样本,对样本信号的数据集进行扩充;然后提取波磨振动信号的时域统计指标作为波磨数据的特征;最后使用分类算法对不同特征的波磨振动数据进行学习与分类。使用实测钢轨波磨振动数据进行试验验证,结果表明:利用本文方法所生成的伪样本数据,在时域、频域以及时域特征指标方面均与真实样本数据基本一致;使用KNN、SVM和DT三种分类模型对波磨数据的特征进行分类和对比,均可较好地进行波磨识别。
展开更多
关键词
钢轨波磨
伪样本
试验研究
一维深度卷积
生成对抗网络
特征指标
平均分类准确率
在线阅读
下载PDF
职称材料
题名
基于一维深度卷积生成对抗网络的钢轨波磨识别方法
被引量:
1
1
作者
谢烨
赵闻强
杨红运
包学海
机构
浙江省交通投资集团有限公司智慧交通研究分公司
浙江杭海城际铁路有限公司
出处
《铁道建筑》
北大核心
2022年第12期62-66,71,共6页
基金
城市轨道交通系统安全保障技术国家工程实验室项目(发改办高技[2016]583号)。
文摘
实际工程中钢轨波磨数据难以大量获取,无法构建庞大数据集进行智能诊断模型训练。针对这一问题,本文提出了一种基于一维深度卷积生成对抗网络的钢轨波磨识别方法。首先使用一维生成对抗网络生成与实际波磨振动信号结构相同的伪样本,对样本信号的数据集进行扩充;然后提取波磨振动信号的时域统计指标作为波磨数据的特征;最后使用分类算法对不同特征的波磨振动数据进行学习与分类。使用实测钢轨波磨振动数据进行试验验证,结果表明:利用本文方法所生成的伪样本数据,在时域、频域以及时域特征指标方面均与真实样本数据基本一致;使用KNN、SVM和DT三种分类模型对波磨数据的特征进行分类和对比,均可较好地进行波磨识别。
关键词
钢轨波磨
伪样本
试验研究
一维深度卷积
生成对抗网络
特征指标
平均分类准确率
Keywords
rail corrugation
pseudo sample
experimental study
1-dimensional deep convolution
generative adversarial networks
feature indicator
average classification accuracy
分类号
U279.2 [机械工程—车辆工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于一维深度卷积生成对抗网络的钢轨波磨识别方法
谢烨
赵闻强
杨红运
包学海
《铁道建筑》
北大核心
2022
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部