A global fast convergent integrated guidance and control design approach is proposed. A disturbance observer is utilized to estimate the uncertainties of integrated guidance and control model in finite time. According...A global fast convergent integrated guidance and control design approach is proposed. A disturbance observer is utilized to estimate the uncertainties of integrated guidance and control model in finite time. According to the multiple sliding-mode surface control, the independent nonsingular terminal sliding functions are presented in each step, and all the sliding-mode surfaces run parallel. These presented sliding-mode surfaces keep zero value from a certain time, and the system states converge quickly in sliding phase. Therefore, the system response speed is increased. The proposed method offers the global convergent time analytically, which is useful to optimize the transient performance of system. Simulation results are used to verify the proposed method.展开更多
Precise position tracking control of the single-rod pneumatic actuator is considered and a nonlinear cascade controller is developed.The proposed controller comprises an extended disturbance observer(EDOB)and a nonlin...Precise position tracking control of the single-rod pneumatic actuator is considered and a nonlinear cascade controller is developed.The proposed controller comprises an extended disturbance observer(EDOB)and a nonlinear robust control law synthesized by the backstepping method.The EDOB is designed to estimate not only the influence of disturbances but also the parameter uncertainties.With the use of parameter and disturbance estimates,the nonlinear cascade controller,which consists of an outer position tracking loop and an inner load pressure loop,is further designed to attenuate the effects of parameter and disturbance estimation errors.The stability of the closed-loop system is proven by means of Lyapunov theory.Extensive comparative experimental results obtained verify the effectiveness of the proposed nonlinear cascade controller and its performance robustness to parameter and external disturbance variations in practical implementation.展开更多
In the Raymond mill grinding processes,high-accuracy control for the current of Raymond mill is vital to enhance the product quality and production efficiency as well as cut down the consumption of spare parts.However...In the Raymond mill grinding processes,high-accuracy control for the current of Raymond mill is vital to enhance the product quality and production efficiency as well as cut down the consumption of spare parts.However,strong external disturbances,such as variations of ore hardness and ore size,always exist.It is not easy to make the current of Raymond mill constant due to these strong disturbances.Several control strategies have been proposed to control the grinding processes.However,most of them(such as PID and MPC)reject disturbances merely through feedback regulation and do not deal with the disturbances directly,which may lead to poor control performance when strong disturbances occur.To improve disturbance rejection performance,a control scheme based on PI and disturbance observer is proposed in this work.The scheme combines a feedforward compensation part based on disturbance observer and a feedback regulation part using PI.The test results illustrate that the proposed method can obtain remarkable superiority in disturbance rejection compared with PI method in the Raymond mill grinding processes.展开更多
基金Supported by the National Natural Science Foundation of China(60875039, 60774016)the Science Foundation of Education Office of Shandong Province of China(J08LJ01).
基金Project(61673386)supported by the National Natural Science Foundation of ChinaProject(2018QNJJ006)supported by the High-Tech Institute of Xi’an,China
文摘A global fast convergent integrated guidance and control design approach is proposed. A disturbance observer is utilized to estimate the uncertainties of integrated guidance and control model in finite time. According to the multiple sliding-mode surface control, the independent nonsingular terminal sliding functions are presented in each step, and all the sliding-mode surfaces run parallel. These presented sliding-mode surfaces keep zero value from a certain time, and the system states converge quickly in sliding phase. Therefore, the system response speed is increased. The proposed method offers the global convergent time analytically, which is useful to optimize the transient performance of system. Simulation results are used to verify the proposed method.
基金Project(51505474)supported by the National Natural Science Foundation of ChinaProject(2015XKMS020)supported by the Fundamental Research Funds for the Central Universities,China+1 种基金Project(2016T90520)supported by the China Postdoctoral Science FoundationProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Precise position tracking control of the single-rod pneumatic actuator is considered and a nonlinear cascade controller is developed.The proposed controller comprises an extended disturbance observer(EDOB)and a nonlinear robust control law synthesized by the backstepping method.The EDOB is designed to estimate not only the influence of disturbances but also the parameter uncertainties.With the use of parameter and disturbance estimates,the nonlinear cascade controller,which consists of an outer position tracking loop and an inner load pressure loop,is further designed to attenuate the effects of parameter and disturbance estimation errors.The stability of the closed-loop system is proven by means of Lyapunov theory.Extensive comparative experimental results obtained verify the effectiveness of the proposed nonlinear cascade controller and its performance robustness to parameter and external disturbance variations in practical implementation.
基金Projects(61504027,61573099)supported by the National Natural Science Foundation of ChinaProject(BK20140647)supported by the Natural Science Foundation of Jiangsu Province,ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘In the Raymond mill grinding processes,high-accuracy control for the current of Raymond mill is vital to enhance the product quality and production efficiency as well as cut down the consumption of spare parts.However,strong external disturbances,such as variations of ore hardness and ore size,always exist.It is not easy to make the current of Raymond mill constant due to these strong disturbances.Several control strategies have been proposed to control the grinding processes.However,most of them(such as PID and MPC)reject disturbances merely through feedback regulation and do not deal with the disturbances directly,which may lead to poor control performance when strong disturbances occur.To improve disturbance rejection performance,a control scheme based on PI and disturbance observer is proposed in this work.The scheme combines a feedforward compensation part based on disturbance observer and a feedback regulation part using PI.The test results illustrate that the proposed method can obtain remarkable superiority in disturbance rejection compared with PI method in the Raymond mill grinding processes.