对于一阶常微分方程组,将具有导数变量的系数矩阵作三角化分解,使其简化成单位矩阵.应用具有三阶精度、单步自起步、无条件稳定的隐式算法对一阶常微分方程组进行了简化,改进了C a lahan算法.其中逆矩阵与矩阵的乘积,是通过矩阵三角化...对于一阶常微分方程组,将具有导数变量的系数矩阵作三角化分解,使其简化成单位矩阵.应用具有三阶精度、单步自起步、无条件稳定的隐式算法对一阶常微分方程组进行了简化,改进了C a lahan算法.其中逆矩阵与矩阵的乘积,是通过矩阵三角化回代求解计算,从而回避了矩阵求逆.该算法保留了原方程组系数矩阵的稀疏存储方式和稀疏矩阵的运算规则,减少了计算时间和运算过程所需要的存储空间.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos.7007104260073043+1 种基金60133010 (国家自然科学基金) the Assisting Project of Ministry of Education of China for Backbone Teachers of University and College (国家教育部高等学校骨
文摘对于一阶常微分方程组,将具有导数变量的系数矩阵作三角化分解,使其简化成单位矩阵.应用具有三阶精度、单步自起步、无条件稳定的隐式算法对一阶常微分方程组进行了简化,改进了C a lahan算法.其中逆矩阵与矩阵的乘积,是通过矩阵三角化回代求解计算,从而回避了矩阵求逆.该算法保留了原方程组系数矩阵的稀疏存储方式和稀疏矩阵的运算规则,减少了计算时间和运算过程所需要的存储空间.