期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于无监督域适应的跨场景带钢表面缺陷识别
1
作者
刘坤
杨晓松
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2023年第3期477-485,共9页
深度学习模型面对跨场景的带钢表面缺陷识别时存在泛化性能差的问题,为此提出端到端的多级对齐域适应神经网络模型(MADA),实现源域与目标域数据的像素级光照分布对齐与特征级纹理分布对齐.MADA通过无参考像素级光照分布对齐模块和光照...
深度学习模型面对跨场景的带钢表面缺陷识别时存在泛化性能差的问题,为此提出端到端的多级对齐域适应神经网络模型(MADA),实现源域与目标域数据的像素级光照分布对齐与特征级纹理分布对齐.MADA通过无参考像素级光照分布对齐模块和光照校正损失函数,将源域与目标域数据投影到光照子空间,实现源域与目标域的像素级光照分布对齐.利用纹理特征提取器和特征级域鉴别器的对抗学习,实现源域和目标域数据的纹理分布对齐.实验在邯郸钢铁集团带钢表面缺陷数据集的F1指数达到98%,在谢维尔钢铁集团带钢表面缺陷数据集上的F1指数达到86.6%.实验结果表明,与其他域适应方法相比,所提方法具有更好的泛化性能.
展开更多
关键词
带钢表面缺陷识别
域适应
跨场景
泛化
光照
纹理
在线阅读
下载PDF
职称材料
题名
基于无监督域适应的跨场景带钢表面缺陷识别
1
作者
刘坤
杨晓松
机构
河北工业大学人工智能与数据科学学院
出处
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2023年第3期477-485,共9页
基金
国家自然科学基金资助项目(62173124)
河北省自然科学基金资助项目(F2019202305).
文摘
深度学习模型面对跨场景的带钢表面缺陷识别时存在泛化性能差的问题,为此提出端到端的多级对齐域适应神经网络模型(MADA),实现源域与目标域数据的像素级光照分布对齐与特征级纹理分布对齐.MADA通过无参考像素级光照分布对齐模块和光照校正损失函数,将源域与目标域数据投影到光照子空间,实现源域与目标域的像素级光照分布对齐.利用纹理特征提取器和特征级域鉴别器的对抗学习,实现源域和目标域数据的纹理分布对齐.实验在邯郸钢铁集团带钢表面缺陷数据集的F1指数达到98%,在谢维尔钢铁集团带钢表面缺陷数据集上的F1指数达到86.6%.实验结果表明,与其他域适应方法相比,所提方法具有更好的泛化性能.
关键词
带钢表面缺陷识别
域适应
跨场景
泛化
光照
纹理
Keywords
strip surface defect identification
domain adaptation
cross scene
generalization
illumination
texture
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于无监督域适应的跨场景带钢表面缺陷识别
刘坤
杨晓松
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2023
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部