期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
带钢表面检测中压缩感知图像去噪方法 被引量:2
1
作者 崔东艳 夏克文 《科学技术与工程》 北大核心 2016年第7期229-235,共7页
带钢表面图像中存在高斯噪声、椒盐噪声,以及信号的稀疏性问题,为此研究一种压缩感知图像去噪方法,建立基于分段正则化OMP算法的图像去噪模型,经过边裂、孔洞、辊印三种典型缺陷图像去噪处理的仿真实验和对比分析,结果表明在信号稀疏度... 带钢表面图像中存在高斯噪声、椒盐噪声,以及信号的稀疏性问题,为此研究一种压缩感知图像去噪方法,建立基于分段正则化OMP算法的图像去噪模型,经过边裂、孔洞、辊印三种典型缺陷图像去噪处理的仿真实验和对比分析,结果表明在信号稀疏度未知的情况下仍然能够有效可靠地重构信号,保证全局优化的同时提高了算法的运算速度;特别是峰值信噪比(PSNR)值较高,可以有效的滤除噪声污染,改善图像质量,并能满足图像实时处理要求。 展开更多
关键词 带钢表面检测 压缩感知 图像去噪 分段正则化OMP算法
在线阅读 下载PDF
基于融合注意力和多尺度特征的热轧带钢表面缺陷检测方法
2
作者 包广清 周芷意 孟庆成 《北京工业大学学报》 北大核心 2025年第8期944-956,共13页
针对热扎带钢表面缺陷面积较小、形态多样、边界模糊且背景复杂的问题,提出一种热轧带钢表面缺陷检测模型SFSP-YOLOv7。首先,通过改进k-means++聚类算法调整先验框维度,使用交并比(intersection over union, IoU)距离替换欧氏距离度量,... 针对热扎带钢表面缺陷面积较小、形态多样、边界模糊且背景复杂的问题,提出一种热轧带钢表面缺陷检测模型SFSP-YOLOv7。首先,通过改进k-means++聚类算法调整先验框维度,使用交并比(intersection over union, IoU)距离替换欧氏距离度量,引入遗传算法(genetic algorithm, GA)以获得更具代表性的锚框尺寸,并提升模型的回归速度和小面积缺陷检测的精确度。其次,对于边界模糊且背景复杂的缺陷,提出一种目标检测边界框损失函数FocalSIoU,以减少模型中不必要特征的学习,加快检测速度,提升预测框的回归效果。最后,设计一种多尺度特征融合模块(multi-scale feature fusion module, MFFM),通过多尺度信息融合增强模型特征提取能力,提高小目标的检测精确度,并改善模型检测误检率。在模型Head结构中引入空到深(space to depth, SPD)卷积模块对模型进行改进,避免细粒度信息的丢失,降低目标漏检率。通过NEU-DET数据集进行验证,结果表明,SFSP-YOLOv7模型检测的平均精度均值(mean average precision, mAP)为78.3%,相比原YOLOv7模型提升了5.0个百分点,表明提出的检测方法具有有效性。 展开更多
关键词 表面缺陷检测 深度学习 YOLOv7 损失函数 注意力机制 多尺度特征融合
在线阅读 下载PDF
基于小波去噪与改进Canny算法的带钢表面缺陷检测 被引量:6
3
作者 崔莹 赵磊 +1 位作者 李恒 刘辉 《现代电子技术》 北大核心 2024年第4期148-152,共5页
针对带钢表面图像亮度不均匀、对比度低以及缺陷种类多、形式复杂的问题,提出一种基于小波去噪与改进Canny算法的带钢表面缺陷检测算法。首先通过小波变换将原始图像分解,对低频分量采用改进的同态滤波提高亮度和对比度,对高频分量采用... 针对带钢表面图像亮度不均匀、对比度低以及缺陷种类多、形式复杂的问题,提出一种基于小波去噪与改进Canny算法的带钢表面缺陷检测算法。首先通过小波变换将原始图像分解,对低频分量采用改进的同态滤波提高亮度和对比度,对高频分量采用改进的阈值函数进行去噪,并通过小波重构得到增强图像。其次对传统Canny算法进行改进,通过改进的自适应加权中值滤波进行平滑,并增加梯度方向模板;然后采用迭代式最优阈值选择法与最大类间方差法来求取高低阈值,提高算法的自适应性。最后采用形态学处理对缺陷边缘填充,并去除干扰边缘及毛刺,得到带钢表面缺陷区域。实验结果表明,所提算法对带钢表面缺陷的检测效果较好、精度较高,适用于多种类型的带钢表面缺陷检测。 展开更多
关键词 小波去噪 CANNY算法 表面缺陷检测 同态滤波 自适应加权中值滤波 形态学处理
在线阅读 下载PDF
面向工业场景带钢表面缺陷检测的LF-YOLO 被引量:3
4
作者 马肖瑶 黎睿 +1 位作者 李自力 翟文正 《计算机工程与应用》 CSCD 北大核心 2024年第18期78-87,共10页
针对工业场景下带钢表面缺陷尺寸大小不一、采集图像模糊导致传统缺陷检测算法在实际应用中精度低的问题,提出一种面向工业场景带钢表面缺陷检测的LF-YOLO算法。模型通过设计一种局部填充上采样模块对输入像素进行上采样,提高模型对模... 针对工业场景下带钢表面缺陷尺寸大小不一、采集图像模糊导致传统缺陷检测算法在实际应用中精度低的问题,提出一种面向工业场景带钢表面缺陷检测的LF-YOLO算法。模型通过设计一种局部填充上采样模块对输入像素进行上采样,提高模型对模糊图片的识别能力,降低模型对小目标缺陷的漏检率。通过引入专注视觉任务的FReLU激活函数,提高模型定位缺陷的准确率。提出一种轻量级的漏斗注意力机制并与特征提取模块C2f进行结合,增强模型对不同尺寸缺陷的特征提取能力。在开源数据集NEU-DET与GC10-DET上的实验结果表明,改进后的模型平均检测精度比原始YOLOv8算法精度分别高7.0和15.4个百分点,且相较于其他目标缺陷检测模型在平均检测精度方面具有优势,并进一步通过消融实验验证了每个模块的有效性。 展开更多
关键词 表面缺陷检测 深度学习 上采样 注意力机制 激活函数
在线阅读 下载PDF
基于改进YOLOv5的带钢表面缺陷检测 被引量:2
5
作者 杨威 杨俊 许聪源 《计量学报》 CSCD 北大核心 2024年第11期1671-1680,共10页
针对带钢表面缺陷检测方法存在检测精度低和检测速度慢的问题,提出一种基于改进YOLOv5的带钢表面缺陷检测方法。首先,采用内容感知特征重组CARAFE作为多尺度特征融合的上采样算子,构建具有通道缩放的自适应空间特征融合CS-ASFF结构,以... 针对带钢表面缺陷检测方法存在检测精度低和检测速度慢的问题,提出一种基于改进YOLOv5的带钢表面缺陷检测方法。首先,采用内容感知特征重组CARAFE作为多尺度特征融合的上采样算子,构建具有通道缩放的自适应空间特征融合CS-ASFF结构,以增强多尺度特征融合并控制模型复杂度。其次,在模型的卷积层和跨层级结构引入GSConv和VoVGSCSP模块,以减小计算量并提高检测精度。最后,采用Focal-GIOU Loss作为损失函数来解决带钢缺陷图像中难易样本不平衡的问题,并提升模型对复杂数据的适应能力。实验结果表明,在NEU-DET数据集上该方法达到了80.6%的均值平均精度(P_(mAP)),计算量为14.8 GFLOPs。与YOLOv5相比,P_(mAP)提高了4.3%且计算量减少了6.33%。与当前主流目标检测网络相比,在更低的计算量下该方法具有最高的检测精度,能够满足真实工业场景下的带钢表面缺陷实时检测。 展开更多
关键词 机器视觉 表面缺陷检测 YOLOv5 多尺度融合 损失函数
在线阅读 下载PDF
改进YOLOv5模型的带钢表面缺陷检测方法
6
作者 陈万志 张春光 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2024年第3期359-365,共7页
针对带钢表面缺陷检测中的漏检和精度较低问题,提出一种融合swin-transformer和坐标注意力(coordinate attention,CA)模块的改进YOLOv5模型检测方法。在YOLOv5模型的主干网络中引入swin-transformer特征提取模块,使主干网络更聚焦于图... 针对带钢表面缺陷检测中的漏检和精度较低问题,提出一种融合swin-transformer和坐标注意力(coordinate attention,CA)模块的改进YOLOv5模型检测方法。在YOLOv5模型的主干网络中引入swin-transformer特征提取模块,使主干网络更聚焦于图像全局特征信息的提取;在特征融合网络输出分支末端嵌入CA模块,进一步增强目标缺陷方向和位置信息的敏感度。研究结果表明:改进模型在NEU-DET数据集上的平均精度值(mAP)达到了77.6%,较原YOLOv5模型提高了3个百分点。改进模型提升了带钢表面缺陷检测精度,具有更好的缺陷检测能力。 展开更多
关键词 表面缺陷检测 swin-transformer模块 坐标注意力模块 YOLOv5网络
在线阅读 下载PDF
基于特征表征与学习反馈的动态带钢缺陷样本筛选方法
7
作者 苑玮琦 刘文滔 李绍丽 《仪器仪表学报》 北大核心 2025年第4期240-250,共11页
带钢表面缺陷检测是保证钢铁产品质量的关键环节,实现高效准确的缺陷检测对保障产品性能具有重要意义。近年来,深度学习方法在缺陷检测领域进展显著,但在实际应用中仍面临两个问题:一方面,由于工业生产追求高良品率,导致缺陷样本获取受... 带钢表面缺陷检测是保证钢铁产品质量的关键环节,实现高效准确的缺陷检测对保障产品性能具有重要意义。近年来,深度学习方法在缺陷检测领域进展显著,但在实际应用中仍面临两个问题:一方面,由于工业生产追求高良品率,导致缺陷样本获取受限,且样本标注耗时费力;另一方面,采集的样本中可能存在冗余特征,影响模型训练效率和泛化性能。针对特征冗余问题,提出一种基于特征表征与学习反馈机制的动态样本筛选方法。首先构建包含几何形态、灰度分布及方向特征等多维特征量化模型,系统表征缺陷特征。随后,设计基于特征表征的样本筛选策略,结合特征聚类快速筛选少量具有多样性和代表性的训练样本。最后,设计基于置信度评估的动态优化策略,通过模型的学习反馈获取关键补充样本,提升特征覆盖范围,实现训练样本的自适应优化。NEU-DET数据集的实验结果表明,该方法在将训练样本数量减少52%的情况下,平均检测精度达到76.99%,与完整数据集基本持平。同时,每轮训练迭代时间减少62%,降低了计算开销,验证了方法在样本筛选与检测性能之间的有效平衡。此外,在多种主流目标检测模型上的验证结果表明,该方法在不同检测架构下均能有效提升效率并保持性能,展现出良好的适用性。 展开更多
关键词 表面缺陷检测 样本筛选 特征表征 形态学特征 深度学习
在线阅读 下载PDF
基于元学习的带钢表面缺陷小样本语义分割 被引量:1
8
作者 冯虎 宋克臣 +1 位作者 崔文琦 颜云辉 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第3期354-360,共7页
由于缺少带钢表面缺陷样本,使得深度神经网络在带钢表面缺陷检测的应用受到了限制,为解决这一实际问题,提出了一种基于元学习思想的小样本语义分割深度学习方法.该方法引入了多尺度解码器和注意力机制.多尺度解码器能够聚合不同尺度的... 由于缺少带钢表面缺陷样本,使得深度神经网络在带钢表面缺陷检测的应用受到了限制,为解决这一实际问题,提出了一种基于元学习思想的小样本语义分割深度学习方法.该方法引入了多尺度解码器和注意力机制.多尺度解码器能够聚合不同尺度的缺陷特征信息,提高网络的分割精度.注意力机制能够有效增强缺陷信息表达,并且抑制背景信息的干扰.此外,构建了一个带钢表面缺陷语义分割数据集,该数据集包含9类带钢表面缺陷.在该数据集上进行了相关实验,结果表明本文方法在平均交并比和前景-背景交并比指标上优于PFENet,SCLNet和HSNet等方法. 展开更多
关键词 表面缺陷检测 元学习 小样本语义分割 注意力机制 多尺度解码器
在线阅读 下载PDF
改进Mask R-CNN算法的带钢表面缺陷检测 被引量:38
9
作者 翁玉尚 肖金球 夏禹 《计算机工程与应用》 CSCD 北大核心 2021年第19期235-242,共8页
在带钢的生产过程中可能会因为生产工艺的问题导致带钢表面出现缺陷,传统的带钢表面检测方法存在检测速度慢、检测精度低等问题。在计算机深度学习快速发展的今天,为实现带钢表面缺陷快速有效的检测,提出改进的掩码区域卷积神经网络(Mas... 在带钢的生产过程中可能会因为生产工艺的问题导致带钢表面出现缺陷,传统的带钢表面检测方法存在检测速度慢、检测精度低等问题。在计算机深度学习快速发展的今天,为实现带钢表面缺陷快速有效的检测,提出改进的掩码区域卷积神经网络(MaskR-CNN)算法,使用k-meansII聚类算法改进区域建议网络(RPN)锚框生成方法;同时调整MaskR-CNN模型的网络结构,去掉掩码分支,提高了模型的缺陷检测速度。实验在NEU-DET数据集的5种缺陷检测中将原算法的均值平均精度(mAP)从0.8102提升到0.9602,检测速度达到5.9 frame/s。并且能够实现对缺陷目标的检测和实例分割,以便研究人员观测缺陷的大小和形状,从而改进工艺。相比于目前其他深度学习的缺陷检测算法,更能满足带钢的生产检测要求。 展开更多
关键词 深度学习 表面缺陷检测 锚框 聚类算法 掩码分支
在线阅读 下载PDF
面向复杂环境中带钢表面缺陷检测的轻量级DCN-YOLO 被引量:27
10
作者 卢俊哲 张铖怡 +1 位作者 刘世鹏 宁德军 《计算机工程与应用》 CSCD 北大核心 2023年第15期318-328,共11页
基于深度学习的智能检测技术逐渐在复杂钢铁生产环境带钢表面缺陷检测过程中使用。为了应对在资源受限的边缘设备中部署高精度模型的挑战,提出一个面向复杂环境中带钢表面缺陷检测的轻量级DCN-YOLO模型,该模型将可形变卷积网络DCN与原始... 基于深度学习的智能检测技术逐渐在复杂钢铁生产环境带钢表面缺陷检测过程中使用。为了应对在资源受限的边缘设备中部署高精度模型的挑战,提出一个面向复杂环境中带钢表面缺陷检测的轻量级DCN-YOLO模型,该模型将可形变卷积网络DCN与原始YOLOv5结合,以提高模型对不同尺寸和形状缺陷的灵敏度。为降低计算复杂度,在YOLO模型中引入了深度可分离卷积DSConv和高效通道注意力机制ECA两个轻量级模块,使模型更好地理解输入数据中各个通道之间的关系,在提高模型的检测精度和泛化能力的同时,大幅降低模型的计算量。进一步通过消融实验及横向对比实验,验证了每个创新模块的有效性。通过经典的开源带钢数据集NEU-DET和实际工业带钢数据集分别验证了轻量级DCN-YOLO模型在表面缺陷检测精度和计算复杂度方面的优势。 展开更多
关键词 表面缺陷检测 可形变卷积网络 深度可分离卷积 ECA通道注意力 轻量级YOLOv5 图像预处理
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部