期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
带权稀疏PCA算法及其应用
1
作者
宣士斌
《重庆大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2014年第4期46-51,共6页
主成份分析(PCA)算法是特征提取的重要方法之一,由于其本身没有提供更多的分类信息,直接在其上进行识别效果往往并不理想。为了提取PCA特征值中有利于识别的特征信息,提出一种带权稀疏PCA算法。它利用基本PCA算法实现去噪功能,利用Lagra...
主成份分析(PCA)算法是特征提取的重要方法之一,由于其本身没有提供更多的分类信息,直接在其上进行识别效果往往并不理想。为了提取PCA特征值中有利于识别的特征信息,提出一种带权稀疏PCA算法。它利用基本PCA算法实现去噪功能,利用Lagrange乘子方法求得使PCA特征空间中类内距离最小,类间距离最大的一组权值,并利用稀疏PCA(SPCA)算法解决维数约简和保留小特征值对应的特征向量所含的分类信息。在公开人脸数据库上对该算法进行测试,实验结果表明该算法不仅运行速度快,而且有较高的正确识别率。
展开更多
关键词
成份
分析
线性判别
分析
套索
带权稀疏主成份分析
在线阅读
下载PDF
职称材料
题名
带权稀疏PCA算法及其应用
1
作者
宣士斌
机构
四川大学计算机学院
广西民族大学信息科学与工程学院
出处
《重庆大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2014年第4期46-51,共6页
基金
国家自然科学基金委员会与中国民用航空局联合资助重点项目(60736046)
广西自然科学基金(2012GXNSFAA053227)
文摘
主成份分析(PCA)算法是特征提取的重要方法之一,由于其本身没有提供更多的分类信息,直接在其上进行识别效果往往并不理想。为了提取PCA特征值中有利于识别的特征信息,提出一种带权稀疏PCA算法。它利用基本PCA算法实现去噪功能,利用Lagrange乘子方法求得使PCA特征空间中类内距离最小,类间距离最大的一组权值,并利用稀疏PCA(SPCA)算法解决维数约简和保留小特征值对应的特征向量所含的分类信息。在公开人脸数据库上对该算法进行测试,实验结果表明该算法不仅运行速度快,而且有较高的正确识别率。
关键词
成份
分析
线性判别
分析
套索
带权稀疏主成份分析
Keywords
PCA
linear discriminat analysis
lasso, weighted sparse PCA
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
带权稀疏PCA算法及其应用
宣士斌
《重庆大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2014
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部