期刊文献+
共找到49篇文章
< 1 2 3 >
每页显示 20 50 100
基于因果正则化极限学习机的风电功率短期预测方法 被引量:7
1
作者 杨茂 张书天 王勃 《电力系统保护与控制》 EI CSCD 北大核心 2024年第11期127-136,共10页
随着风电并网比例的逐年提高,电力系统对风电功率预测的准确性和稳定性提出了更高要求。对于同一风电场而言,为了避免不同特征选择方法所选择的风电场特征子集不同,从因果关系的角度出发,提出了一种基于因果正则化极限学习机(causal reg... 随着风电并网比例的逐年提高,电力系统对风电功率预测的准确性和稳定性提出了更高要求。对于同一风电场而言,为了避免不同特征选择方法所选择的风电场特征子集不同,从因果关系的角度出发,提出了一种基于因果正则化极限学习机(causal regularized extreme learning machine, CRELM)的风电功率短期预测方法。首先将极限学习机(extreme learning machine, ELM)建模为结构因果模型(structural causal model, SCM),在此基础上计算隐藏层神经元与输出层神经元之间的平均因果效应向量。然后将该平均因果效应向量与输出层权重相结合构成因果正则化项,在最小化训练误差的同时最大化网络的因果关系,以进一步提升模型的预测准确性和预测稳定性。最后,以国内蒙西某风电场数据为例,与采用特征选择或不采用特征选择的预测模型相对比,验证了所提方法的有效性和适用性。 展开更多
关键词 特征选择 因果正则 结构因果模型 平均因果效应向量 极限学习
在线阅读 下载PDF
基于动态步长交替方向乘子法正则化极限学习机 被引量:1
2
作者 卢辉煌 邹伟东 李钰祥 《深圳大学学报(理工版)》 CAS CSCD 北大核心 2024年第3期264-273,共10页
为解决交替方向乘子法(alternating direction method of multipliers,ADMM)正则化极限学习机(regularized extreme learning machine,RELM)迭代收敛速度慢和迭代后期误差衰减停滞的问题,提出一种基于动态步长ADMM的正则化极限学习机,记... 为解决交替方向乘子法(alternating direction method of multipliers,ADMM)正则化极限学习机(regularized extreme learning machine,RELM)迭代收敛速度慢和迭代后期误差衰减停滞的问题,提出一种基于动态步长ADMM的正则化极限学习机,记为VAR-ADMM-RELM.该算法在ADMM算法的基础上采用动态衰减步长进行迭代,并同时使用L1和L2正则化对模型复杂度进行约束,解得具有稀疏性和鲁棒性的极限学习机输出权重.在UCI和MedMNIST数据集中对VAR-ADMM-RELM、极限学习机(extreme learning machine,ELM)、正则化极限学习机(regularized ELM,RELM)和基于ADMM的L1正则化ELM(ADMMRELM)进行拟合、分类和回归对比实验.结果表明,VAR-ADMM-RELM算法的平均分类准确率和平均回归预测精度分别比ELM算法提升了1.94%和2.49%,较标准ADMM算法可以取得3~5倍的速度提升,且对异常值干扰具有更好的鲁棒性和泛化能力,在高维度多样本的场景下建模效率逼近标准极限学习机.该方法有效提升了ADMM算法的收敛速度,取得了比主流ELM算法更加优秀的性能表现. 展开更多
关键词 人工智能 学习 极限学习 交替方向乘子法 正则 动态衰减
在线阅读 下载PDF
基于3种新型群体智能算法优化正则化极限学习机的三峡水库入库日径流预测 被引量:5
3
作者 张代凤 崔东文 《长江科学院院报》 CSCD 北大核心 2024年第7期16-24,共9页
准确预测的入库日径流在水库优化调度中发挥着重要作用。为提高预测精度,提出一种基于小波包变换(WPT)和蜣螂优化(DBO)算法、珍鲹优化(GTO)算法、泥环算法(MRA)优化正则化极限学习机(RELM)的预测模型,并将其应用于三峡水库入库日径流预... 准确预测的入库日径流在水库优化调度中发挥着重要作用。为提高预测精度,提出一种基于小波包变换(WPT)和蜣螂优化(DBO)算法、珍鲹优化(GTO)算法、泥环算法(MRA)优化正则化极限学习机(RELM)的预测模型,并将其应用于三峡水库入库日径流预测研究。首先,利用WPT将三峡水库入库日径流时间序列分解为1个周期项分量和1个波动项分量;其次,利用DBO、GTO、MRA分别优化RELM输入层权值和隐含层偏差,建立WPT-DBO-RELM、WPT-GTO-RELM、WPT-MRA-RELM模型;最后,利用所建立的3种模型分别对入库日径流周期项分量和波动项分量进行预测和重构,并构建基于极限学习机(ELM)的WPT-DBO-ELM、WPT-GTO-ELM、WPT-MRA-ELM模型、基于BP神经网络的WPT-DBO-BP、WPT-GTO-BP、WPT-MRA-BP模型、未经优化的WPT-RELM、WPT-ELM、WPT-BP模型和未经分解的DBO-RELM、GTO-RELM、MRA-RELM模型作对比分析模型。结果表明:①WPT-DBO-RELM、WPT-GTO-RELM、WPT-MRA-RELM模型对三峡水库入库日径流预测的平均绝对百分比误差MAPE分别为0.512%、0.519%、0.762%,平均绝对误差MAE分别为54.05、55.97、86.76 m^(3)/s,均方根误差RMSE分别为84.99、84.81、128.18 m^(3)/s,决定系数DC≥0.9994,希尔不等系数TIC≤0.00517,预测效果优于其他12种模型,具有更高的预测精度和更好的泛化能力。②DBO、GTO、MRA能有效优化RELM网络参数,显著提高RELM预测性能。③引入正则化项的RELM可有效防止预测模型过拟合,提高模型的泛化能力,预测性能优于ELM、BP网络。④所构建的3种模型预测精度高、计算规模小,是一种有效的入库日径流时间序列预测模型。 展开更多
关键词 日径流预测 正则极限学习 蜣螂优算法 珍鲹优算法 泥环算法 小波包变换 三峡水库
在线阅读 下载PDF
基于改进流形正则化极限学习机的短期电力负荷预测 被引量:34
4
作者 李冬辉 闫振林 +1 位作者 姚乐乐 郑宏宇 《高电压技术》 EI CAS CSCD 北大核心 2016年第7期2092-2099,共8页
为提高短期电力负荷预测的精度与效率,提出一种改进流形正则化极限学习机的短期电力负荷预测方法;首先,为了改善极限学习机(ELM)的泛化性能与效率,并解决随机初始化参数导致极限学习机存在的潜在问题,采用流形正则化理论优化极限学习机... 为提高短期电力负荷预测的精度与效率,提出一种改进流形正则化极限学习机的短期电力负荷预测方法;首先,为了改善极限学习机(ELM)的泛化性能与效率,并解决随机初始化参数导致极限学习机存在的潜在问题,采用流形正则化理论优化极限学习机;其次,针对流形正则化极限学习机中参数的选择,以及流形正则化极限学习机隐层节点选择的问题,提出将贝叶斯优化算法(BOA)融入到流形正则化极限学习机中以优化流形正则化极限学习机(MRELM)。最后,通过实验数据分析,改进流形正则化极限学习机预测方法将预测平均相对误差降低到了1.903%,30次实验的平均相对误差的方差降低到了1.9‰,平均单次运行时间降低到了6.113 s。 展开更多
关键词 短期电力负荷预测 流形正则 极限学习 贝叶斯优算法 平均相对误差 方差
在线阅读 下载PDF
一种基于正则优化的批次继承极限学习机算法 被引量:5
5
作者 刘彬 杨有恒 +3 位作者 赵志彪 吴超 刘浩然 闻岩 《电子与信息学报》 EI CSCD 北大核心 2020年第7期1734-1742,共9页
极限学习机(ELM)作为一种新型神经网络,具有极快的训练速度和良好的泛化性能。针对极限学习机在处理高维数据时计算复杂度高,内存需求巨大的问题,该文提出一种批次继承极限学习机(B-ELM)算法。首先将数据集均分为不同批次,采用自动编码... 极限学习机(ELM)作为一种新型神经网络,具有极快的训练速度和良好的泛化性能。针对极限学习机在处理高维数据时计算复杂度高,内存需求巨大的问题,该文提出一种批次继承极限学习机(B-ELM)算法。首先将数据集均分为不同批次,采用自动编码器网络对各批次数据进行降维处理;其次引入继承因子,建立相邻批次之间的关系,同时结合正则化框架构建拉格朗日优化函数,实现批次极限学习机数学建模;最后利用MNIST, NORB和CIFAR-10数据集进行测试实验。实验结果表明,所提算法具有较高的分类精度,并且有效降低了计算复杂度和内存消耗。 展开更多
关键词 极限学习 高维数据 批次学习 继承因子 正则
在线阅读 下载PDF
基于正则化与遗忘因子的极限学习机及其在故障预测中的应用 被引量:12
6
作者 杜占龙 李小民 +2 位作者 郑宗贵 张国荣 毛琼 《仪器仪表学报》 EI CAS CSCD 北大核心 2015年第7期1546-1553,共8页
为了解决在线贯序极限学习机(OS-ELM)算法容易产生奇异矩阵、算法贯序更新过程中没有考虑训练样本时效性的问题,提出基于l2-正则化和自适应遗忘因子的OS-ELM(RFOS-ELM)算法。RFOS-ELM在初始阶段加入正则化机制,克服因矩阵奇异而降低OS-... 为了解决在线贯序极限学习机(OS-ELM)算法容易产生奇异矩阵、算法贯序更新过程中没有考虑训练样本时效性的问题,提出基于l2-正则化和自适应遗忘因子的OS-ELM(RFOS-ELM)算法。RFOS-ELM在初始阶段加入正则化机制,克服因矩阵奇异而降低OS-ELM泛化能力的缺点。在贯序更新阶段,RFOS-ELM通过引入自适应遗忘因子实时调整新旧训练样本所占比重,推导正则化条件下带遗忘因子RFOS-ELM的递推更新算法,提高其对动态变化系统的跟踪能力。某型无人机机载发射机故障预测实例表明,相比于传统OS-ELM和正则化OS-ELM算法,本文提出方法具有更高的预测精度。 展开更多
关键词 故障预测 时间序列 在线贯序极限学习 l2-正则 遗忘
在线阅读 下载PDF
基于流形正则化的在线半监督极限学习机 被引量:6
7
作者 王萍 王迪 冯伟 《上海交通大学学报》 EI CAS CSCD 北大核心 2015年第8期1153-1158,1167,共7页
在基于流形正则化的半监督极限学习机(SS-ELM)的基础上,利用分块矩阵的运算法则,提出了在线半监督极限学习机(OSS-ELM)方法.为避免在实时学习的过程中由于数据累积引起的内存不足,通过对SS-ELM的目标函数的流形正则项的近似,给出了OSS-... 在基于流形正则化的半监督极限学习机(SS-ELM)的基础上,利用分块矩阵的运算法则,提出了在线半监督极限学习机(OSS-ELM)方法.为避免在实时学习的过程中由于数据累积引起的内存不足,通过对SS-ELM的目标函数的流形正则项的近似,给出了OSS-ELM的近似算法OSSELM(buffer).在Abalone数据集上的实验显示,OSS-ELM(buffer)在线学习的累计时间与所处理的样本个数呈线性关系,同时,9个公共数据集上的实验表明,OSS-ELM(buffer)的泛化能力与SS-ELM的泛化能力的相对偏差在1%以下.这些实验结果说明,OSS-ELM(buffer)不仅解决了内存问题,还在基本保持SS-ELM泛化能力的基础上大幅度提高了在线学习速度,可以有效应用于在线半监督学习当中. 展开更多
关键词 极限学习 半监督学习 在线学习 流形正则
在线阅读 下载PDF
基于流形正则化的批量分层编码极限学习机 被引量:2
8
作者 刘彬 杨有恒 +3 位作者 刘静 王卫涛 刘浩然 闻岩 《计量学报》 CSCD 北大核心 2021年第7期937-943,共7页
针对极限学习机在处理高维数据时存在内存能耗大、分类准确率低、泛化性差等问题,提出了一种批量分层编码极限学习机算法。首先通过对数据集分批处理,以减小数据维度,降低输入复杂性;然后采用多层自动编码器结构对各批次数据进行无监督... 针对极限学习机在处理高维数据时存在内存能耗大、分类准确率低、泛化性差等问题,提出了一种批量分层编码极限学习机算法。首先通过对数据集分批处理,以减小数据维度,降低输入复杂性;然后采用多层自动编码器结构对各批次数据进行无监督编码,以实现深层特征提取;最后利用流形正则化思想构建含有继承因子的流形分类器,以保持数据的完整性,提高算法的泛化性能。实验结果表明,该方法实现简单,在NORB,MNIST和USPS数据集上的分类准确率分别可以达到92.16%、99.35%和98.86%,与其它极限学习机算法对比,在降低计算复杂度和减少CPU内存消耗上具有较明显的优势。 展开更多
关键词 计量学 极限学习 高维数据 批次学习 无监督编码 流形正则
在线阅读 下载PDF
基于Jerk流形正则化深度极限学习机的电能质量复合扰动识别 被引量:3
9
作者 赵晨 李开成 +2 位作者 林寿英 曾子莹 林炜鑫 《华南师范大学学报(自然科学版)》 CAS 北大核心 2021年第4期8-16,共9页
为了有效利用电能质量复合扰动识别中存在的大量难以标注的实测样本,提出了一种基于Jerk流形正则化深度极限学习机(DJRELM)的半监督扰动学习方法.算法通过堆叠嵌入Jerk流形正则化的极限学习机自编码器(JRELM-AE)实现在复合扰动特征自动... 为了有效利用电能质量复合扰动识别中存在的大量难以标注的实测样本,提出了一种基于Jerk流形正则化深度极限学习机(DJRELM)的半监督扰动学习方法.算法通过堆叠嵌入Jerk流形正则化的极限学习机自编码器(JRELM-AE)实现在复合扰动特征自动提取的同时保持数据内部流形结构.分类层通过阈值预测极限学习机和Jerk正则化半监督极限学习机的结合将多层网络扩展到多标签半监督分类应用.实验结果表明:该方法在不同噪声环境下的分类准确率均高于几种基于极限学习机的监督学习、半监督学习算法、传统多层极限学习机和深度卷积神经网络,具有理论意义和实用价值. 展开更多
关键词 电能质量 扰动识别 极限学习 流形正则 半监督学习
在线阅读 下载PDF
基于QPSO正则化极限学习机的轴承故障诊断 被引量:5
10
作者 刘鑫 任海莉 《组合机床与自动化加工技术》 北大核心 2021年第3期36-40,共5页
从复杂的振动信号中提取有效的故障特征并且得到准确的分类结果,建立可靠的故障诊断方法一直都是滚动轴承故障诊断研究中的关键课题。文章提出一种改进的正则化极限学习机(Regularized Extreme Learning Machine,RELM)应用于降噪自动编... 从复杂的振动信号中提取有效的故障特征并且得到准确的分类结果,建立可靠的故障诊断方法一直都是滚动轴承故障诊断研究中的关键课题。文章提出一种改进的正则化极限学习机(Regularized Extreme Learning Machine,RELM)应用于降噪自动编码器(Denoising AutoEncoder,DAE)的故障分类方法。首先,将振动信号经过快速傅里叶变换得到的频域系数作为高维数据,然后利用堆叠降噪自动编码器(Stacked Denoising Autoencoders,SDAE)对高维数据进行学习,提取更具鲁棒性的特征,再将该特征作为RELM的输入进行分类,得到故障诊断模型。针对RELM中正则化参数选取困难问题,采用量子粒子群优化算法(Quantum-behaved particle swarm optimization,QPSO)进行参数优化。实验结果表明,基于SDAE-RELM的诊断方法在泛化性和故障识别率都优于SDAE和其他分类算法结合的故障识别方法。 展开更多
关键词 滚动轴承 降噪自动编码器 正则极限学习 特征提取
在线阅读 下载PDF
基于天牛群优化与改进正则化极限学习机的网络入侵检测 被引量:25
11
作者 王振东 刘尧迪 +2 位作者 杨书新 王俊岭 李大海 《自动化学报》 EI CAS CSCD 北大核心 2022年第12期3024-3041,共18页
正则化极限学习机(Regularized extreme learning machine,RELM)因其极易于实现、训练速度快等优点在诸多领域均取得了成功应用.对此,本文将RELM引入到入侵检测中,设计了天牛群优化算法(Beetle swarm optimization,BSO),并针对RELM由于... 正则化极限学习机(Regularized extreme learning machine,RELM)因其极易于实现、训练速度快等优点在诸多领域均取得了成功应用.对此,本文将RELM引入到入侵检测中,设计了天牛群优化算法(Beetle swarm optimization,BSO),并针对RELM由于随机初始化参数带来的潜在缺陷,提出基于天牛群优化与改进正则化极限学习机(BSO-IRELM)的网络入侵检测算法.使用LU分解求解RELM的输出权值矩阵,进一步缩短了RELM的训练时间,同时利用BSO对RELM的权值和阈值进行联合优化.为避免BSO算法陷入局部最优,引入Tent映射反向学习、莱维飞行的群体学习与动态变异策略提升优化性能.实验结果表明,在机器学习UCI数据集上,相比于RELM、IRELM、GA-IRELM、PSO-IRELM等算法,BSO-IRELM的数据分类性能提升明显.最后,将BSO-IRELM应用于网络入侵检测数据集NSL-KDD,并与BP(Back propagation)、LR(Logistics regression)、RBF(Radial basis function)、AB(AdaBoost)、SVM(Support vector machine)、RELM、IRELM等算法进行了对比,结果证明BSO-IRELM算法在准确率、精确率、真正率和假正率等指标上均具有明显优势. 展开更多
关键词 入侵检测 正则极限学习 LU分解 天牛群优算法
在线阅读 下载PDF
基于主成分-正则化极限学习机的超高密度电法非线性反演 被引量:18
12
作者 江沸菠 戴前伟 董莉 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2015年第9期3356-3369,共14页
超高密度电法是一种新的地球物理探测技术,它通过多通道数据采集和多装置数据联合反演,极大地提高了电法勘探的成像精度.本文提出一种主成分-正则化极限学习机(PC-RELM)非线性反演方法,该方法针对超高密度电法所获取的高维勘探数据进行... 超高密度电法是一种新的地球物理探测技术,它通过多通道数据采集和多装置数据联合反演,极大地提高了电法勘探的成像精度.本文提出一种主成分-正则化极限学习机(PC-RELM)非线性反演方法,该方法针对超高密度电法所获取的高维勘探数据进行反演建模,通过随机设定隐层参数来简化模型的学习过程,通过主成分分析方法来进行高维数据降维,最后引入正则化因子提高反演模型的泛化能力.论文给出了超高密度电法的原理、样本构造方法和非线性反演流程,使用交叉验证方法获得了优化的隐节点数目和正则化参数,构造了优化的反演模型.通过两个经典的超高密度模型的反演结果表明,该方法能够较好地解决超高密度电法反演的高维数据非线性建模问题,能够弥补单一装置数据反演的不足,同时相较其他的非线性反演方法(ELM,BPNN和GRNN)具有更加准确的反演结果. 展开更多
关键词 超高密度电法 正则 极限学习 主成分分析
在线阅读 下载PDF
基于流形正则化极限学习机的文本分类算法研究 被引量:6
13
作者 庞皓明 冀俊忠 +1 位作者 刘金铎 姚垚 《计算机工程》 CAS CSCD 北大核心 2019年第6期242-248,共7页
基于极限学习机的文本分类方法在对输入的文本特征进行随机映射时,会呈现一种非线性的几何结构,利用最小二乘法无法对其进行求解,影响文本的分类性能。为此,引入一种新的流形正则化思想,提出基于极限学习机的改进算法。利用拉普拉斯特... 基于极限学习机的文本分类方法在对输入的文本特征进行随机映射时,会呈现一种非线性的几何结构,利用最小二乘法无法对其进行求解,影响文本的分类性能。为此,引入一种新的流形正则化思想,提出基于极限学习机的改进算法。利用拉普拉斯特征映射保持输入文本特征的几何结构。基于样本的类别信息对样本点之间的距离进行修正,优先选择类别相同的样本点,以改善分类性能。在Reuters和20newsgroup数据集上的实验结果表明,与正则化极限学习机算法、AdaBELM算法等相比,该算法分类性能较好,F1-measure值可达91.42%。 展开更多
关键词 文本分类 监督学习 正则极限学习 流形正则 特征映射
在线阅读 下载PDF
基于极限学习机的短期电力负荷在线预测 被引量:2
14
作者 杨凌 彭文英 +2 位作者 杨思怡 杜娟 程丽 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第5期637-644,共8页
为满足智能电网对电力负荷实时预测的需求,提出基于稀疏递归最小二乘法的极限学习机(SRLS-ELM)在线学习算法,用于短期电力负荷的在线预测.相比在线序列ELM, SRLS-ELM算法无需选择离线样本初始化网络输出权重,将网络学习的平方误差与输... 为满足智能电网对电力负荷实时预测的需求,提出基于稀疏递归最小二乘法的极限学习机(SRLS-ELM)在线学习算法,用于短期电力负荷的在线预测.相比在线序列ELM, SRLS-ELM算法无需选择离线样本初始化网络输出权重,将网络学习的平方误差与输出权值的稀疏正则化项相结合,用l1-范数稀疏化网络隐藏层节点,用次梯度策略解决求解过程中代价函数无法处处可微的问题,以递归最小二乘的训练方法完成在线学习,根据估计误差自适应寻找最优正则化参数.仿真结果表明,基于SRLS-ELM的算法能有效简化网络结构,且与ELM、堆叠核ELM批量、在线序列ELM半在线以及精确在线支持向量机回归模型相比,对短期电力负荷在线预测时具有更高的预测精度和学习效率,且鲁棒性强. 展开更多
关键词 短期电力负荷预测 极限学习 在线学习 正则
在线阅读 下载PDF
多样性正则化极限学习机的集成方法 被引量:3
15
作者 陈洋 王士同 《计算机科学与探索》 CSCD 北大核心 2022年第8期1819-1828,共10页
极限学习机(ELM)是一种单隐层前向网络的训练算法,随机确定输入层权值和隐含层偏置,通过分析的方法确定输出层的权值,ELM克服了基于梯度的学习算法的很多不足,如局部极小、不合适的学习速率、学习速度慢等,却不可避免地造成了过拟合的... 极限学习机(ELM)是一种单隐层前向网络的训练算法,随机确定输入层权值和隐含层偏置,通过分析的方法确定输出层的权值,ELM克服了基于梯度的学习算法的很多不足,如局部极小、不合适的学习速率、学习速度慢等,却不可避免地造成了过拟合的隐患且稳定性较差,特别是对于规模较大的数据集。针对上述问题,提出多样性正则化极限学习机(DRELM)的集成方法。首先,从改变隐层节点参数的分布来为每个ELM随机选取输入权重,采用LOO交叉验证方法和MSE^(PRESS)方法来寻找每个基学习器的最优隐节点数,计算并输出最优隐含层输出权重,训练出较好且具有差异性的基学习器。然后,将有关多样性的新惩罚项显式添加到整个目标函数中,迭代更新每个基学习器的隐含层输出权重并输出结果。最后,集成所有基学习器的输出结果对其求平均值,得到整个网络模型最后的输出结果。该方法能够有效地实现多样性正则化极限学习机(RELM)的融合,兼顾准确率和多样性。在10个不同规模的UCI数据集上的实验结果表明所提出的方法是行之有效的。 展开更多
关键词 极限学习(ELM) 集成学习 多样性 正则极限学习(RELM)
在线阅读 下载PDF
流形正则化框架下的极限学习机预测锂电池SOC方法 被引量:1
16
作者 谈发明 李秋烨 +1 位作者 赵俊杰 王琪 《实验室研究与探索》 CAS 北大核心 2019年第5期46-50,共5页
为提高锂电池荷电状态建模预测的精度及泛化能力,提出一种流行正则化框架下的极限学习机建模预测方法。首先,为了解决极限学习机建立预测模型存在过拟合泛化能力弱的问题,以流形假设为依据,在数据输入空间构建图拉普拉斯算子,在其框架... 为提高锂电池荷电状态建模预测的精度及泛化能力,提出一种流行正则化框架下的极限学习机建模预测方法。首先,为了解决极限学习机建立预测模型存在过拟合泛化能力弱的问题,以流形假设为依据,在数据输入空间构建图拉普拉斯算子,在其框架内求解极限学习机隐层和输出层之间的权重,达到正则优化目的。其次,针对正则化参数难以选择的问题,提出将差分进化算法融入基于流形正则化框架的极限学习机中以优化其正则化参数。最后,利用采集到的锂电池数据进行了实验验证。结果表明:该方法建立的预测模型预测锂电池SOC精度高,泛化能力强,为锂电池SOC的预测建模提供一种新方法。 展开更多
关键词 流形正则 荷电状态 极限学习 差分进
在线阅读 下载PDF
采用极限学习机预测优化的超高压输电线畸变电场屏蔽 被引量:10
17
作者 彭春华 姜磊 +1 位作者 刘君 刘兵 《电网技术》 EI CSCD 北大核心 2017年第11期3655-3661,共7页
为解决超高压输电工程所面临的电场环境超标和环境治理成本过高的问题,该文提出以屏蔽效果最优和屏蔽成本最低为综合目标对民居附近的畸变电场进行多目标优化屏蔽。鉴于屏蔽方式与屏蔽效果之间难以直接用数学函数准确描述,提出先利用有... 为解决超高压输电工程所面临的电场环境超标和环境治理成本过高的问题,该文提出以屏蔽效果最优和屏蔽成本最低为综合目标对民居附近的畸变电场进行多目标优化屏蔽。鉴于屏蔽方式与屏蔽效果之间难以直接用数学函数准确描述,提出先利用有限元软件仿真数据建立基于新型加权正则化极限学习机算法的屏蔽效果预测模型,然后基于此预测模型,采用分子微分进化算法对屏蔽线架设条数及其架设位置进行多目标优化求解。研究结果表明,该文方法可合理优化屏蔽线架设参数,得到成本更少而屏蔽效果更好的屏蔽方案,同时也为超高压输电畸变电场的屏蔽提供了新思路。 展开更多
关键词 电场屏蔽 预测 正则极限学习 分子微分进算法 屏蔽线
在线阅读 下载PDF
基于改进极限学习机的转炉出钢合金化锰收得率预测模型 被引量:11
18
作者 周凯啸 林文辉 +3 位作者 孙建坤 冯小明 方炜 刘青 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第5期1399-1406,共8页
针对转炉炼钢出钢合金化过程合金的加入量偏差较大的问题,为更精确地控制合金加入量,以某钢厂冶炼HRB400钢出钢过程加入硅锰合金为例,建立基于极限学习机算法的Mn元素收得率预测模型,并引入正则化方法和改进粒子群算法(IPSO)对极限学习... 针对转炉炼钢出钢合金化过程合金的加入量偏差较大的问题,为更精确地控制合金加入量,以某钢厂冶炼HRB400钢出钢过程加入硅锰合金为例,建立基于极限学习机算法的Mn元素收得率预测模型,并引入正则化方法和改进粒子群算法(IPSO)对极限学习机算法进行优化,以提高模型的泛化能力和预测精度。研究结果表明:Mn元素收得率预测相对误差在5%和3%以内的命中率分别为95%和80%,准确性高于BP神经网络及人工经验的预测结果。照此种方式控制硅锰合金加入量可以满足成品钢的成分要求,且每炉次硅锰合金加入量较人工经验值平均减少20 kg,可带来每年400万元的经济效益,能够为现场生产提供参考。 展开更多
关键词 转炉 出钢合金 元素收得率 正则极限学习 改进粒子群算法 预测模型
在线阅读 下载PDF
基于流形正则化半监督学习的污水处理操作工况识别方法 被引量:3
19
作者 赵立杰 王海龙 陈斌 《化工学报》 EI CAS CSCD 北大核心 2016年第6期2462-2468,共7页
污水处理过程容易受外界冲激扰动影响,引发污泥上浮、老化、中毒、膨胀等故障工况,导致出水水质质量差,能源消耗高等问题,如何快速准确识别污水操作工况故障至关重要。针对污水工况识别过程中现有监督学习方法未利用大量未标记数据蕴含... 污水处理过程容易受外界冲激扰动影响,引发污泥上浮、老化、中毒、膨胀等故障工况,导致出水水质质量差,能源消耗高等问题,如何快速准确识别污水操作工况故障至关重要。针对污水工况识别过程中现有监督学习方法未利用大量未标记数据蕴含的丰富操作工况信息,采用基于流形正则化极限学习机的半监督学习方法,监视生化污水处理过程操作运行工况。该方法在学习过程中,在标记和未标记数据输入空间构建图拉普拉斯算子,通过随机特征映射建立隐含层,在流形正则化框架下,求解隐含层和输出层之间的权重,保留随机神经网络的计算效率和泛化性能。仿真实验结果表明,基于半监督极限学习机的污水处理工况识别在准确率与可靠性方面相对优于基本极限学习机方法。 展开更多
关键词 污水处理 极限学习 半监督算法 流形正则
在线阅读 下载PDF
极限学习机前沿进展与趋势 被引量:122
20
作者 徐睿 梁循 +2 位作者 齐金山 李志宇 张树森 《计算机学报》 EI CSCD 北大核心 2019年第7期1640-1670,共31页
极限学习机(Extreme Learning Machine,ELM)作为前馈神经网络学习中一种全新的训练框架,在行为识别、情感识别和故障诊断等方面被广泛应用,引起了各个领域的高度关注和深入研究.ELM最初是针对单隐层前馈神经网络的学习速度而提出的,之... 极限学习机(Extreme Learning Machine,ELM)作为前馈神经网络学习中一种全新的训练框架,在行为识别、情感识别和故障诊断等方面被广泛应用,引起了各个领域的高度关注和深入研究.ELM最初是针对单隐层前馈神经网络的学习速度而提出的,之后又被众多学者扩展到多隐层前馈神经网络中.该算法的核心思想是随机选取网络的输入权值和隐层偏置,在训练过程中保持不变,仅需要优化隐层神经元个数.网络的输出权值则是通过最小化平方损失函数,来求解Moore - Penrose广义逆运算得到最小范数最小二乘解.相比于其它传统的基于梯度的前馈神经网络学习算法,ELM具有实现简单,学习速度极快和人为干预较少等显著优势,已成为当前人工智能领域最热门的研究方向之一.ELM的学习理论表明,当隐层神经元的学习参数独立于训练样本随机生成,只要前馈神经网络的激活函数是非线性分段连续的,就可以逼近任意连续目标函数或分类任务中的任何复杂决策边界.近年来,随机神经元也逐步在越来越多的深度学习中使用,而ELM可以为其提供使用的理论基础.本文首先概述了ELM的发展历程,接着详细阐述了ELM的工作原理.然后对ELM理论和应用的最新研究进展进行了归纳总结,着重讨论并分析了自ELM提出以来的主要学习算法和模型,包括提出的原因、核心思想、求解方法、各自的优缺点以及相关问题.最后,针对当前的研究现状,指出了ELM存在的争议、问题和挑战,并对未来的研究方向和发展趋势进行了展望。 展开更多
关键词 极限学习 网络结构 正则 学习 深度学习 在线学习 并行计算
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部