期刊文献+
共找到70篇文章
< 1 2 4 >
每页显示 20 50 100
基于变分深度嵌入-带有梯度惩罚的生成对抗网络的锂离子电池老化特性建模 被引量:4
1
作者 李弈 张金龙 +2 位作者 漆汉宏 魏艳君 张迪 《电工技术学报》 EI CSCD 北大核心 2024年第13期4226-4239,共14页
锂离子电池老化实验是研究电池老化性能的基本手段,但针对大量电池的老化实验一般很耗时。为了节约时间和测试成本,获得更多电池数据,该文将变分深度嵌入(VaDE)模型与带有梯度惩罚的生成对抗网络(WGANGP)相结合,组成VaDE-WGANGP架构,进... 锂离子电池老化实验是研究电池老化性能的基本手段,但针对大量电池的老化实验一般很耗时。为了节约时间和测试成本,获得更多电池数据,该文将变分深度嵌入(VaDE)模型与带有梯度惩罚的生成对抗网络(WGANGP)相结合,组成VaDE-WGANGP架构,进而基于该生成模型设计了一种电池老化特性建模与数据生成的方法。该文以一套开放的电池全寿命周期测试数据集为依据展开研究,首先,将电池放电过程中的电压、电流和放电容量这三个外特性作为模型的输入,通过VaDE的编码器将原始数据映射到隐空间,再通过优化获得符合特定规则的分布;然后,通过一定方式对该分布空间进行采样,并将采样所得的隐变量输入解码器中进行数据生成;后续数据测试表明,VaDE-WGANGP在电池外特性数据生成上具有较好的性能,可以实现对电池老化过程中基础外特性的模拟,在数据量不足时也可以为某些数据驱动算法提供有效的扩展数据资源。 展开更多
关键词 锂离子电池 老化特性 生成模型 变分深度嵌入 带有梯度惩罚的生成对抗网络
在线阅读 下载PDF
基于梯度惩罚Wasserstein生成对抗网络的数字岩心重建 被引量:1
2
作者 徐慧兵 李道伦 查文舒 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第11期1559-1563,共5页
文章针对三维Wasserstein生成对抗网络(Wasserstein generative adversarial networks,WGAN)重建数字岩心的梯度不稳定问题,提出一种基于带梯度惩罚的Wasserstein生成对抗网络(Wasserstein generative adversarial networks with gradie... 文章针对三维Wasserstein生成对抗网络(Wasserstein generative adversarial networks,WGAN)重建数字岩心的梯度不稳定问题,提出一种基于带梯度惩罚的Wasserstein生成对抗网络(Wasserstein generative adversarial networks with gradient penalty,WGAN-GP)三维数字岩心重建算法。首先利用卷积神经网络构建生成网络学习真实样本的分布,然后再构建判别网络以区分重建样本和真实样本。由于WGAN的权值裁剪导致权重分散不均匀,WGAN-GP增加了梯度惩罚项,使得梯度分布更加均匀并加快网络收敛速度,让训练更加稳定。实验通过孔隙度、比表面积和欧拉特性的对比表明,相比于WGAN算法,WGAN-GP三维数字岩心重建算法能更加有效地重现岩石的三维孔隙结构特征。 展开更多
关键词 数字岩心 生成对抗网络(GAN) 梯度惩罚 三维重建 卷积神经网络
在线阅读 下载PDF
基于生成对抗网络的云制造工业服务选择方法 被引量:1
3
作者 郑秀宝 李静 +1 位作者 祝铭 宁莹莹 《计算机科学》 北大核心 2025年第4期54-63,共10页
随着信息技术和制造技术的深度融合,云制造工业生产已成为制造业的关键部分。云制造环境的动态性和服务资源间的相互依赖关系,使得选择最佳工业资源服务变得困难。现有的选择优化方法大多基于启发式算法,但这些算法往往缺乏对云制造环... 随着信息技术和制造技术的深度融合,云制造工业生产已成为制造业的关键部分。云制造环境的动态性和服务资源间的相互依赖关系,使得选择最佳工业资源服务变得困难。现有的选择优化方法大多基于启发式算法,但这些算法往往缺乏对云制造环境的自适应能力。因此,文中构建了一种云制造环境下的服务选择模型,提出了一种基于深度学习和生成对抗网络思想的服务选择算法,该模型能够灵活适应环境变化,利用图表示学习方法构建任务服务约束图,根据任务、服务和工业生产约束之间的内在联系学习资源服务特征,在算法改进阶段引入梯度优化和损失函数策略,选择最佳工业资源服务。实验结果表明,所提算法相较于其他对比算法表现出了更强的性能优势。 展开更多
关键词 云制造 工业生产约束 图表示学习 生成对抗网络 梯度损失函数
在线阅读 下载PDF
GP-WIRGAN:梯度惩罚优化的Wasserstein图像循环生成对抗网络模型 被引量:8
4
作者 冯永 张春平 +2 位作者 强保华 张逸扬 尚家兴 《计算机学报》 EI CSCD 北大核心 2020年第2期190-205,共16页
通常情形下,现有的图像生成模型都采用单次前向传播的方式生成图像,但实际中,画家通常是反复修改后才完成一幅画作的;生成对抗模型(Generative Adversarial Networks,GAN)能生成图像,但却很难训练.在保证生成图像质量的前提下,效仿作画... 通常情形下,现有的图像生成模型都采用单次前向传播的方式生成图像,但实际中,画家通常是反复修改后才完成一幅画作的;生成对抗模型(Generative Adversarial Networks,GAN)能生成图像,但却很难训练.在保证生成图像质量的前提下,效仿作画时的不断更新迭代,以提升生成样本多样性并增强样本语义,同时引入Wasserstein距离,提出了Wasserstein图像循环生成对抗网络模型,简称WIRGAN(Wasserstein Image Recurrent Generative Adversarial Networks Model).WIRGAN定义了生成模型和判别模型,其中,生成模型是由一系列结构相同的神经网络模型组成的循环结构,用时间步骤T控制生成模型的循环次数,用于迭代式生成图像,并以最后一个循环结构的生成图像作为整个生成模型的输出;判别模型也由神经网络构建,结合权重剪枝技术,用来判别输入图像是生成的还是真实的.WIRGAN利用Wasserstein距离作为目标函数,将生成模型和判别模型进行博弈对抗训练.另外,由于模型存在难以优化的问题,本文引入了梯度惩罚来解决此类问题,进一步提出了梯度惩罚优化的Wasserstein图像循环生成对抗网络模型(Gradient Penalty Optimized Wasserstein Image Recurrent Generative Adversarial Networks Model,GP-WIRGAN).最后,WIRGAN和GP-WIRGAN在MNIST、CIFAR10、CeUN四个数据集上进行了基础学习能力、模型间GAM自比较、模型内GAM自比较、初始得分比较、图像生成可视化、时间效率比较等6组实验,采用生成对抗矩阵(Generative Adversarial Metric,GAM)和起始分数(Inception Scores)进行评估,结果表明,本文提出的WIRGAN、GP-WIRGAN具有良好的稳定性,可以生成高质量的图像. 展开更多
关键词 图像生成 生成对抗网络 Wasserstein距离 深度学习 权重剪枝 梯度惩罚
在线阅读 下载PDF
融合多维梯度反馈的生成对抗网络推荐系统
5
作者 李祥霞 陈楷锐 李彬 《计算机科学与探索》 CSCD 北大核心 2024年第6期1579-1589,共11页
互联网时代,推荐系统在日常生活中变得十分重要,生成对抗网络(GAN)与推荐算法的结合为该领域的发展提供了新契机。以往基于生成对抗网络的推荐系统中,鉴别器提供的梯度反馈是二元的,此类反馈为生成器提供的帮助不够全面,造成诸如生成器... 互联网时代,推荐系统在日常生活中变得十分重要,生成对抗网络(GAN)与推荐算法的结合为该领域的发展提供了新契机。以往基于生成对抗网络的推荐系统中,鉴别器提供的梯度反馈是二元的,此类反馈为生成器提供的帮助不够全面,造成诸如生成器性能不稳定、迭代速度慢等问题,进而影响模型的整体推荐效果。针对此问题,提出了多维梯度反馈生成对抗网络(MGFGAN),根据生成器生成的多维用户评分向量,该模型将自编码器(AutoEncoder)融入鉴别器中,达到为生成器提供多元反馈的目的,旨在让生成器生成的数据更加贴近用户偏好;此外,融合多维梯度反馈机制给模型整体带来了运算量激增的问题;因此,MGFGAN在生成器中引入了负采样模块,使得生成器同时兼顾用户感兴趣和不感兴趣的物品,从而加速生成器快速生成与真实用户分布一致的数据,提升模型的效率。提出的模型在公开数据集FilmTrust和Ciaos上展开实验仿真。实验结果表明MGFGAN的推荐性能优于其他基于生成对抗网络的推荐模型,并且在效率和稳定性方面取得改善。 展开更多
关键词 推荐系统 多维梯度反馈 生成对抗网络(GAN) 协同过滤
在线阅读 下载PDF
基于梯度惩罚-生成对抗神经网络的页岩三维数字岩心重构 被引量:5
6
作者 李秉科 聂昕 +3 位作者 朱林奇 王晨晨 林伟 韩登林 《西安石油大学学报(自然科学版)》 CAS 北大核心 2023年第2期53-60,共8页
数字岩心技术在油气的勘探开发中发挥着越来越重要的作用。由于传统的数字岩心重构方法存在成本高、耗时长等问题,提出使用带有梯度惩罚的生成对抗神经网络(WGAN-GP)实现页岩的三维数字岩心重构。以三组分的页岩图像为训练样本进行模型... 数字岩心技术在油气的勘探开发中发挥着越来越重要的作用。由于传统的数字岩心重构方法存在成本高、耗时长等问题,提出使用带有梯度惩罚的生成对抗神经网络(WGAN-GP)实现页岩的三维数字岩心重构。以三组分的页岩图像为训练样本进行模型的训练,得到了可以生成三维页岩图像的生成器模型,进而重构了多个三维岩心图像。将重构岩心与原始岩心进行了各种参数的对比分析,结果表明重构岩心与原始岩心具有很好的一致性,证明了本文方法的可靠性。使用WGAN-GP进行岩心重构具有岩心生成速度快、重构图像尺寸不受限制等优点,具有广泛的应用前景。 展开更多
关键词 数字岩心 页岩 三维重构 生成对抗神经网络 梯度惩罚
在线阅读 下载PDF
基于梯度惩罚生成对抗网络的过采样算法 被引量:1
7
作者 陶家亮 魏国亮 +2 位作者 宋燕 窦军 穆伟蒙 《上海理工大学学报》 CAS CSCD 北大核心 2023年第3期235-243,共9页
在不平衡数据分类问题中,为了更注重学习原始样本的概率密度分布,提出基于梯度惩罚生成对抗网络的过采样算法(OGPG)。该算法首先引入生成对抗网络(GAN),有效地学习原始数据的概率分布;其次,采用梯度惩罚对判别器输入项的梯度二范数进行... 在不平衡数据分类问题中,为了更注重学习原始样本的概率密度分布,提出基于梯度惩罚生成对抗网络的过采样算法(OGPG)。该算法首先引入生成对抗网络(GAN),有效地学习原始数据的概率分布;其次,采用梯度惩罚对判别器输入项的梯度二范数进行约束,降低了GAN易出现的过拟合和梯度消失,合理地生成新样本。实验部分,在14个公开数据集上运用k近邻和决策树分类器对比其他过采样算法,在评价指标上均有显著提升,并利用Wilcoxon符号秩检验验证了该算法与对比算法在统计学上的差异。结果表明该算法具有良好的有效性和通用性。 展开更多
关键词 不平衡数据 过采样算法 概率密度分布 生成对抗网络 梯度惩罚
在线阅读 下载PDF
基于带梯度惩罚深度卷积生成对抗网络的页岩三维数字岩心重构方法 被引量:2
8
作者 王先武 张挺 +1 位作者 吉欣 杜奕 《计算机应用》 CSCD 北大核心 2021年第6期1805-1811,共7页
针对传统数字岩心重构技术存在的成本高昂、复用性差和重构质量低等问题,提出了一种基于带梯度惩罚深度卷积生成对抗网络(DCGAN-GP)的三维页岩数字岩心重构方法。首先,利用神经网络参数来描述页岩训练图像的分布概率,并完成训练图像的... 针对传统数字岩心重构技术存在的成本高昂、复用性差和重构质量低等问题,提出了一种基于带梯度惩罚深度卷积生成对抗网络(DCGAN-GP)的三维页岩数字岩心重构方法。首先,利用神经网络参数来描述页岩训练图像的分布概率,并完成训练图像的特征提取;其次,保存训练后的网络参数;最后,利用生成器重构出页岩三维数字岩心。实验结果表明,相较于经典的数字岩心重构技术得到的图像,DCGAN-GP得到的图像在孔隙度、变差函数和孔隙大小及分布特征上都更接近训练图像,而且DCGAN-GP的CPU使用率不到经典算法的一半,内存峰值仅有7.1 GB,重构时间达到了每次42 s,体现出模型重构质量高、效率高的特点。 展开更多
关键词 重构 数字岩心 生成对抗网络 深度卷积 梯度惩罚
在线阅读 下载PDF
基于梯度指导的生成对抗网络内镜图像去模糊重建 被引量:8
9
作者 时永刚 张岳 +2 位作者 周治国 李祎 夏卓岩 《电子与信息学报》 EI CSCD 北大核心 2022年第1期70-77,共8页
胃肠镜检查是目前临床上检查和诊断消化道疾病最重要的途径,内窥镜图像的运动模糊会对医生诊断和机器辅助诊断造成干扰。现有的去模糊网络由于缺乏对结构信息的关注,在处理内窥镜图像时普遍存在着伪影和结构变形的问题。为解决这一问题... 胃肠镜检查是目前临床上检查和诊断消化道疾病最重要的途径,内窥镜图像的运动模糊会对医生诊断和机器辅助诊断造成干扰。现有的去模糊网络由于缺乏对结构信息的关注,在处理内窥镜图像时普遍存在着伪影和结构变形的问题。为解决这一问题,提高胃镜图像质量,该文提出一种基于梯度指导的生成对抗网络,网络以多尺度残差网络(Res2net)结构作为基础模块,包含图像信息支路和梯度支路两个相互交互的支路,通过梯度支路指导图像去模糊重建,从而更好地保留图像结构信息,消除伪影、缓解结构变形;设计了类轻量化预处理网络来纠正过度模糊,提高训练效率。在传统胃镜和胶囊胃镜数据集上分别进行了实验,实验结果表明,该算法的峰值信噪比(PSNR)和结构相似度(SSIM)指标均优于对比算法,且复原后的视觉效果更佳,无明显伪影和结构变形。 展开更多
关键词 胃镜图像 去模糊 生成对抗网络 梯度指导
在线阅读 下载PDF
基于轻量级梯度提升机和生成对抗网络的含风电电力系统频率稳定评估 被引量:13
10
作者 赵冬梅 郑亚锐 +1 位作者 谢家康 郭育村 《电网技术》 EI CSCD 北大核心 2022年第8期3181-3190,共10页
针对目前电力系统频率稳定评估研究未考虑新能源和系统拓扑变化的问题,提出一种考虑风速特征的基于轻量级梯度提升机(light gradient boosting machine,lightGBM)和生成对抗网络(generative adversarial network,GAN)的含风电电力系统... 针对目前电力系统频率稳定评估研究未考虑新能源和系统拓扑变化的问题,提出一种考虑风速特征的基于轻量级梯度提升机(light gradient boosting machine,lightGBM)和生成对抗网络(generative adversarial network,GAN)的含风电电力系统频率稳定评估方法。首先分析风电对频率稳定的影响,其次采用lightGBM对频率变化率,暂态频率极值和准稳态频率3个指标建立预测模型,引入注意力机制对输入特征排序降维,通过预测指标综合判断系统频率稳定性。系统拓扑发生改变时,采用GAN产生大量相似样本对模型进行更新。在含风电新英格兰10机39节点系统和含风电IEEE118节点系统上的仿真结果表明,所提方法比传统机器学习方法精度更高,速度更快,泛化性能更好。且考虑风速特征后不同算法的模型精度均大大提高。 展开更多
关键词 风电 电力系统 频率稳定 轻量级梯度提升机 生成对抗网络
在线阅读 下载PDF
基于生成对抗网络的联邦学习深度影子防御方案 被引量:1
11
作者 周辉 陈玉玲 +2 位作者 王学伟 张洋文 何建江 《计算机应用》 CSCD 北大核心 2024年第1期223-232,共10页
联邦学习(FL)可以使用户在不直接上传原始数据的条件下完成多方数据共享和交互,有效降低隐私泄露风险。然而,现有的研究表明敌手仍可以通过共享的梯度信息重构出原始数据。为进一步保护联邦学习隐私,基于生成对抗网络(GAN)提出一种联邦... 联邦学习(FL)可以使用户在不直接上传原始数据的条件下完成多方数据共享和交互,有效降低隐私泄露风险。然而,现有的研究表明敌手仍可以通过共享的梯度信息重构出原始数据。为进一步保护联邦学习隐私,基于生成对抗网络(GAN)提出一种联邦学习深度影子防御方案。首先,通过生成对抗网络学习原始真实数据分布特征,并生成可替代的影子数据;然后,通过影子数据训练影子模型替代原始模型,敌手无法直接获取真实数据训练过的原始模型;最后,利用影子数据在影子模型中产生的影子梯度替代真实梯度,使敌手无法获取真实梯度。在CIFAR10和CIFAR100数据集上进行了实验:与添加噪声、梯度裁剪、梯度压缩、表征扰动和局部正则化稀疏化五种防御方案相比,在CIFAR10数据集上所提方案的均方误差(MSE)是对比方案的1.18~5.34倍,特征均方误差(FMSE)是对比方案的4.46~1.03×10^(7)倍,峰值信噪比(PSNR)是对比方案的49.9%~90.8%;在CIFAR100数据集上的MSE是对比方案的1.04~1.06倍,FMSE是对比方案的5.93~4.24×10^(3)倍,PSNR是对比方案的96.0%~97.6%。相较于深度影子防御方法,所提方案考虑了敌手的实际攻击能力和影子模型训练存在的问题,设计了威胁模型和影子模型生成算法,在理论分析和实验方面表现更好,而且能够在保证准确率的前提下有效降低联邦学习隐私泄露风险。 展开更多
关键词 联邦学习 生成对抗网络 梯度反演 隐私保护 防御方案
在线阅读 下载PDF
基于生成式多对抗强化学习的高比例新能源电网日内优化调度
12
作者 杨楠 宋旭日 +3 位作者 董亮 黄宇鹏 张喆钧 魏旖晨 《电力自动化设备》 北大核心 2025年第11期43-51,共9页
随着新能源占比不断提高,源荷双侧的强随机性增加了电网安全运行风险,强化学习调度算法在应对系统状态转移不确定性的学习能力仍有局限,前瞻性决策能力有待加强。为此,提出基于生成式多对抗强化学习的高比例新能源电网日内优化调度方法... 随着新能源占比不断提高,源荷双侧的强随机性增加了电网安全运行风险,强化学习调度算法在应对系统状态转移不确定性的学习能力仍有局限,前瞻性决策能力有待加强。为此,提出基于生成式多对抗强化学习的高比例新能源电网日内优化调度方法。构建生成式对抗网络作为强化学习目标网络,学习电网未来运行态势的奖励反馈分布经验,从而实现对调度周期内运行趋势的预测,保证了调度决策的最优性。在训练中采用混合经验交叉驱动机制,将经验按调度效果评估并按比例进行提取,缩短了训练时长。在SG-126节点电网调度仿真模拟器上对提出的方法进行测试,计算结果验证了该方法的有效性和稳定性。 展开更多
关键词 生成式多对抗网络 深度强化学习 电网优化调度 深度确定性策略梯度 混合经验交叉驱动机制
在线阅读 下载PDF
基于生成对抗网络的差分隐私生成数据方法 被引量:6
13
作者 杨顺 郝晓燕 +2 位作者 马垚 于丹 陈永乐 《计算机工程与设计》 北大核心 2024年第1期39-46,共8页
针对生成神经网络中添加差分隐私方式复杂,以及加入差分隐私后生成数据质量下降的问题,提出一种基于生成对抗网络的差分隐私生成数据方法,通过在生成对抗网络梯度中加入噪声实现隐私保护。设计自适应剪裁、学习率下降、参数分组聚类优... 针对生成神经网络中添加差分隐私方式复杂,以及加入差分隐私后生成数据质量下降的问题,提出一种基于生成对抗网络的差分隐私生成数据方法,通过在生成对抗网络梯度中加入噪声实现隐私保护。设计自适应剪裁、学习率下降、参数分组聚类优化策略,自适应选取梯度剪裁边界,不断调整学习率以及将权重梯度和偏置梯度分组聚类之后再进行剪裁,保障模型能够收敛,减小差分隐私对生成数据的影响。实验结果表明,该方法可以在不丢失原有隐私保护水平条件下,有效提升生成数据质量。 展开更多
关键词 生成对抗网络 差分隐私 梯度 噪声 隐私保护 优化策略 收敛
在线阅读 下载PDF
基于用户属性和生成对抗网络的推荐系统 被引量:2
14
作者 王永强 陈徐洪 +1 位作者 张壮壮 董云泉 《计算机工程与设计》 北大核心 2024年第1期275-281,共7页
为提升推荐精度,解决传统推荐算法在用户评分向量中存在的未评分项语义模糊造成的推荐精度下降问题,提出一种基于用户属性的条件生成对抗网络的推荐方法。将用户的属性特征进行提取和编码,并作为生成对抗网络的条件,通过这种明确信号指... 为提升推荐精度,解决传统推荐算法在用户评分向量中存在的未评分项语义模糊造成的推荐精度下降问题,提出一种基于用户属性的条件生成对抗网络的推荐方法。将用户的属性特征进行提取和编码,并作为生成对抗网络的条件,通过这种明确信号指导用户偏好的生成并进行推荐。在两个公开的电影评分数据集上进行实验,实验结果表明,所提方法可以有效改善推荐精度,在各评价指标上均优于现有方法,具有一定实用价值。 展开更多
关键词 推荐系统 生成对抗网络 用户属性 协同过滤 评分矩阵 特征提取 梯度学习
在线阅读 下载PDF
融合生成对抗网络和难例挖掘的产品质量预测模型 被引量:1
15
作者 李剑锋 柏雪 +3 位作者 赵春财 钱朋超 王洪涛 徐伟风 《计算机集成制造系统》 EI CSCD 北大核心 2024年第10期3698-3707,共10页
针对连续性工业生产特点,重点关注类别不平衡造成的不合格样本召回率低问题。为了从高维数据提取有效特征,结合one class F-score和最小冗余最大相关性在特征提取方面的优势,有效降低特征维度并提取有价值特征;利用Wasserstein生成对抗... 针对连续性工业生产特点,重点关注类别不平衡造成的不合格样本召回率低问题。为了从高维数据提取有效特征,结合one class F-score和最小冗余最大相关性在特征提取方面的优势,有效降低特征维度并提取有价值特征;利用Wasserstein生成对抗网络(WGAN)方法扩增不合格样本数量;通过类别权重优化Focal Loss函数以提高困难样本识别率;通过轻量级梯度提升机算法结合阈值移动策略,构建基于WGAN数据增强和难例挖掘技术的质量预测模型(WGAN_Focal Loss_LGB(TM))。将所提模型应用于开源SECOM数据集,验证了所提方法的有效性。 展开更多
关键词 高维数据 Wasserstein生成对抗网络 Focal Loss函数 难例挖掘 轻量级梯度提升机算法 阈值移动 产品质量预测
在线阅读 下载PDF
基于策略梯度和生成式对抗网络的变压器油色谱案例扩充方法 被引量:16
16
作者 李雅欣 侯慧娟 +3 位作者 胥明凯 李善武 盛戈皞 江秀臣 《电力自动化设备》 EI CSCD 北大核心 2020年第12期211-217,共7页
油色谱数据的缺乏和不均衡会导致训练过拟合、模型缺乏代表性、测试集效果不理想等问题,从而难以对变压器的状态进行准确评价。针对该问题,将强化学习中的策略梯度算法引入生成式对抗网络GAN(Generative Adversarial Networks),提出了... 油色谱数据的缺乏和不均衡会导致训练过拟合、模型缺乏代表性、测试集效果不理想等问题,从而难以对变压器的状态进行准确评价。针对该问题,将强化学习中的策略梯度算法引入生成式对抗网络GAN(Generative Adversarial Networks),提出了一种基于策略梯度和GAN的变压器油色谱案例生成方法。仿真结果表明,与传统的样本扩充算法相比,利用所提方法合成的样本质量较高。对包含9种故障状态共700组样本的变压器油色谱数据利用所提方法进行油色谱故障样本扩充,利用基于BP神经网络模型的变压器故障分类模型对将扩充后样本作为训练集训练得到的神经网络模型和仅用真实数据作为训练集训练得到的神经网络模型进行了对比,结果表明利用扩充的样本后,变压器故障分类准确率得到了提高。变压器故障诊断实例表明利用所提方法得到的结果与实际情况相符。 展开更多
关键词 变压器 油色谱 样本扩充 生成对抗网络 强化学习 策略梯度
在线阅读 下载PDF
基于生成对抗网络的梯度引导太阳斑点图像去模糊方法 被引量:9
17
作者 李福海 蒋慕蓉 +1 位作者 杨磊 谌俊毅 《计算机应用》 CSCD 北大核心 2021年第11期3345-3352,共8页
针对云南天文台拍摄的高度模糊的太阳斑点图像采用现有深度学习算法恢复难度大、高频信息难以重建等问题,提出了一种基于生成对抗网络(GAN)与梯度信息联合的去模糊方法来重建太阳斑点图,并很好地恢复出图像的高频信息。该方法由一个生... 针对云南天文台拍摄的高度模糊的太阳斑点图像采用现有深度学习算法恢复难度大、高频信息难以重建等问题,提出了一种基于生成对抗网络(GAN)与梯度信息联合的去模糊方法来重建太阳斑点图,并很好地恢复出图像的高频信息。该方法由一个生成器与两个鉴别器构成:首先,生成器采用特征金字塔网络(FPN)框架来获取图像多尺度特征,再将这些特征分层次输入梯度分支以梯度图的形式捕获更小的局部特征;然后,联合梯度分支结果与FPN结果共同重建出具有高频信息的太阳斑点图像;其次,在常规对抗鉴别器的基础上,增加了一个鉴别器用于保证由梯度分支产生的梯度图更加真实;最后,引入一个包括像素内容损失、感知损失和对抗损失的联合训练损失来引导模型进行太阳斑点图像高分辨率重建。实验结果表明,进行图像预处理后的所提方法与现有的深度学习去模糊方法相比,高频信息恢复能力更强,峰值信噪比(PSNR)和结构相似性(SSIM)指标均有显著提高,分别达到27.8010 dB与0.8510,能够满足太阳观测图像高分辨率重建的需要。 展开更多
关键词 去模糊 生成对抗网络 梯度引导 局部细节 太阳斑点
在线阅读 下载PDF
动态梯度阈值裁剪的差分隐私生成对抗网络算法 被引量:2
18
作者 陈少权 蔡剑平 孙岚 《计算机应用》 CSCD 北大核心 2023年第7期2065-2072,共8页
现有的生成对抗网络(GAN)和差分隐私相结合的方法大多采用梯度扰动的方法实现隐私保护,即在优化过程中利用梯度裁剪技术来约束优化器对单个数据的敏感性,并对裁剪后的梯度添加随机噪声以达到保护模型的目的。然而大多数方法在训练时裁... 现有的生成对抗网络(GAN)和差分隐私相结合的方法大多采用梯度扰动的方法实现隐私保护,即在优化过程中利用梯度裁剪技术来约束优化器对单个数据的敏感性,并对裁剪后的梯度添加随机噪声以达到保护模型的目的。然而大多数方法在训练时裁剪阈值固定,而阈值过大或过小均会影响模型的性能。针对该问题,提出动态梯度阈值裁剪的DGC_DPGAN(Dynamic Gradient Clipping Differential Privacy Generative Adversarial Network)算法以兼顾隐私保护和模型的性能。该算法结合预训练技术,在优化过程中先求取每批次隐私数据的梯度F-范数均值作为动态梯度裁剪阈值,再对梯度进行扰动。考虑不同的裁剪顺序,提出先裁剪再加噪的CLIP_DGC_DPGAN(Clip Dynamic Gradient Clipping Differential Privacy Generative Adversarial Network)算法和先加噪再裁剪的DGC_DPGAN算法,并采用Rényi Accountant求取隐私损失。实验结果表明,在相同的隐私预算下,所提出的两种动态梯度裁剪算法与固定梯度阈值裁剪方法相比更优:在Mnist数据集上,所提两种算法在IS(Inception Score)、结构相似性(SSIM)、卷积神经网络(CNN)分类准确率上分别提升了0.32~3.92,0.03~0.27,7%~44%;在Fashion-Mnist数据集上,所提两种算法在IS、SSIM、CNN分类准确率上分别提升了0.40~4.32,0.01~0.44,20%~51%。同时,GAN模型生成图像的可用性更好。 展开更多
关键词 生成对抗网络 差分隐私 动态梯度阈值裁剪 Rényi Accountant
在线阅读 下载PDF
结合Pix2Pix生成对抗网络的灰度图像着色方法 被引量:11
19
作者 李洪安 郑峭雪 +3 位作者 张婧 杜卓明 李占利 康宝生 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2021年第6期929-938,共10页
针对神经网络在进行图像着色时容易出现物体边界不明确、图像着色质量不高的问题,提出结合Pix2Pix生成对抗网络的灰度图像着色方法.首先改进U-Net结构,采用8个下采样层和8个上采样层对图像进行特征提取和颜色预测,提高网络模型对图像深... 针对神经网络在进行图像着色时容易出现物体边界不明确、图像着色质量不高的问题,提出结合Pix2Pix生成对抗网络的灰度图像着色方法.首先改进U-Net结构,采用8个下采样层和8个上采样层对图像进行特征提取和颜色预测,提高网络模型对图像深层次特征的提取能力;然后使用L_(1)损失和smoothL_(1)损失度量生成图像与真实图像之间的差距,对比不同损失函数下的图像着色质量;最后加入梯度惩罚,在生成图像和真实图像分布之间构造新的数据分布,对每个输入数据进行梯度惩罚,改变判别器网络梯度限制方法,提高网络在训练过程中的稳定性.在相同实验环境下,使用Pix2Pix模型和summer2winter数据进行对比分析.实验结果表明,改进后的U-Net和使用smooth L_(1)损失作为生成器损失可以生成更好的着色图像;而L_(1)损失能更好地保持图像结构信息,使用梯度惩罚可以加速模型的收敛速度,提高模型稳定性和图像质量;该方法能更好地学习图像的深层次特征,减少图像着色模糊现象,在有效地保持图像结构相似性的同时提高图像着色质量. 展开更多
关键词 图像着色 生成对抗网络 损失函数 梯度惩罚
在线阅读 下载PDF
基于改进辅助分类生成对抗网络的风机主轴承故障诊断 被引量:34
20
作者 卢锦玲 张祥国 +2 位作者 张伟 郭鲁豫 闻若彤 《电力系统自动化》 EI CSCD 北大核心 2021年第7期148-154,共7页
基于振动信号的风电机组故障诊断方法是风电安全运维领域研究的重点之一。风电机组主轴承较少发生故障,给运用数据挖掘方法判断故障类型带来很大困难。针对该问题,文中提出了一种用于风电机组主轴承故障诊断的数据增强方法。通过对辅助... 基于振动信号的风电机组故障诊断方法是风电安全运维领域研究的重点之一。风电机组主轴承较少发生故障,给运用数据挖掘方法判断故障类型带来很大困难。针对该问题,文中提出了一种用于风电机组主轴承故障诊断的数据增强方法。通过对辅助分类生成对抗网络(ACGAN)的适应性进行改进,引入梯度惩罚,构建了改进ACGAN框架,以提高其学习稳定性;在判别器网络中引入池化层,以提升其在多分类场景下提取数据特征的能力。仿真结果表明,所提出的改进ACGAN框架能够实现对原始数据分布特征的有效学习,抗噪声干扰性强,相对于原框架训练过程更稳定,生成数据的质量更高;能够有效平衡风电机组主轴承故障振动数据,进一步提升了风电机组主轴承故障诊断的正确率。 展开更多
关键词 风电机组 故障诊断 数据增强 辅助分类生成对抗网络 梯度惩罚
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部