期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于HHT和核函数选择的情绪特征提取与识别
1
作者
王晓琳
赵磊
+1 位作者
张维
伏云发
《南京大学学报(自然科学版)》
CAS
CSCD
北大核心
2021年第3期502-511,共10页
脑⁃机接口是一种变革传统人机交互的技术,其中情绪脑⁃机接口是一类重要的脑⁃机交互,可望为情绪的调节、监测或评估提供定量方法,有潜在的重要应用价值,然而情绪相关的脑信号特征提取与识别尚未彻底解决,面临许多挑战.为了探索有效的情...
脑⁃机接口是一种变革传统人机交互的技术,其中情绪脑⁃机接口是一类重要的脑⁃机交互,可望为情绪的调节、监测或评估提供定量方法,有潜在的重要应用价值,然而情绪相关的脑信号特征提取与识别尚未彻底解决,面临许多挑战.为了探索有效的情绪相关脑电(Electroencephalogram,EEG)特征提取和分类方法,采用国际情绪图片系统(International Affective Picture System,IAPS)提供的情绪图片诱发情绪,在情绪诱发期间采集13个被试的脑电EEG信号;采用独立成分分析(Independent Component Analysis,ICA)等方法预处理EEG后,分别采用在时域、频域同时具有较高分辨率的希尔伯特⁃黄变换(Hilbert⁃Huang Transform,HHT)和对不同状态反应敏感的自回归(Auto Regressive,AR)模型提取情绪相关的EEG特征;采用支持向量机(Support Vector Machine,SVM)对其可用的四种核函数进行选择,也利用K⁃近邻(K⁃Nearest Neighbor,KNN)对两类情绪进行识别.结果显示,采用HHT提取特征并利用高斯径向基函数(Radial Basis Function,RBF)核的SVM取得的平均、最高和最低分类精度分别为90.57%±4.13%,96%和88%;采用AR模型提取特征并利用高斯RBF核的SVM取得的平均、最高和最低分类精度分别为88.43%±2.98%,92%和86%.表明HHT能有效地提取情绪相关EEG特征,采用高斯RBF核的SVM可以获得较好的识别结果,可望为基于EEG利用HHT和高斯RBF核的SVM在线识别情绪提供思路.
展开更多
关键词
情绪识别
希尔伯特⁃黄变换
核函数选择
支持向量机
K⁃近邻
在线阅读
下载PDF
职称材料
题名
基于HHT和核函数选择的情绪特征提取与识别
1
作者
王晓琳
赵磊
张维
伏云发
机构
昆明理工大学信息工程与自动化学院
昆明理工大学脑认知与脑机智能融合创新团队
昆明理工大学医学院脑科学与视觉认知研究中心
昆明理工大学理学院
昆明医科大学康复学院
出处
《南京大学学报(自然科学版)》
CAS
CSCD
北大核心
2021年第3期502-511,共10页
基金
国家自然科学基金(81771926,61763022)。
文摘
脑⁃机接口是一种变革传统人机交互的技术,其中情绪脑⁃机接口是一类重要的脑⁃机交互,可望为情绪的调节、监测或评估提供定量方法,有潜在的重要应用价值,然而情绪相关的脑信号特征提取与识别尚未彻底解决,面临许多挑战.为了探索有效的情绪相关脑电(Electroencephalogram,EEG)特征提取和分类方法,采用国际情绪图片系统(International Affective Picture System,IAPS)提供的情绪图片诱发情绪,在情绪诱发期间采集13个被试的脑电EEG信号;采用独立成分分析(Independent Component Analysis,ICA)等方法预处理EEG后,分别采用在时域、频域同时具有较高分辨率的希尔伯特⁃黄变换(Hilbert⁃Huang Transform,HHT)和对不同状态反应敏感的自回归(Auto Regressive,AR)模型提取情绪相关的EEG特征;采用支持向量机(Support Vector Machine,SVM)对其可用的四种核函数进行选择,也利用K⁃近邻(K⁃Nearest Neighbor,KNN)对两类情绪进行识别.结果显示,采用HHT提取特征并利用高斯径向基函数(Radial Basis Function,RBF)核的SVM取得的平均、最高和最低分类精度分别为90.57%±4.13%,96%和88%;采用AR模型提取特征并利用高斯RBF核的SVM取得的平均、最高和最低分类精度分别为88.43%±2.98%,92%和86%.表明HHT能有效地提取情绪相关EEG特征,采用高斯RBF核的SVM可以获得较好的识别结果,可望为基于EEG利用HHT和高斯RBF核的SVM在线识别情绪提供思路.
关键词
情绪识别
希尔伯特⁃黄变换
核函数选择
支持向量机
K⁃近邻
Keywords
emotion recognition
Hilbert⁃Huang Transform
kernel function selection
Support Vector Machine
K⁃Nearest Neighbor
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于HHT和核函数选择的情绪特征提取与识别
王晓琳
赵磊
张维
伏云发
《南京大学学报(自然科学版)》
CAS
CSCD
北大核心
2021
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部