期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
考虑非线性脆性损伤和中间主应力影响的圆形巷道围岩分析 被引量:9
1
作者 张小波 赵光明 +3 位作者 孟祥瑞 潘锐 马文伟 董春亮 《煤炭学报》 EI CAS CSCD 北大核心 2014年第S2期339-346,共8页
针对岩石的脆性破坏特征及峰后力学性能的劣化损伤,引入非线性脆性损伤本构模型,得到三维连续损伤演化方程。将圆形巷道围岩划分为松动破裂区、脆性损伤区、弹性区,考虑中间主应力的作用,采用统一强度准则和连续损伤力学方法,对巷道围... 针对岩石的脆性破坏特征及峰后力学性能的劣化损伤,引入非线性脆性损伤本构模型,得到三维连续损伤演化方程。将圆形巷道围岩划分为松动破裂区、脆性损伤区、弹性区,考虑中间主应力的作用,采用统一强度准则和连续损伤力学方法,对巷道围岩力学状态进行极限平衡分析,推导出围岩损伤破裂半径及应力场分布的解析表达式。通过算例,分析了中间主应力、围岩脆性特征和损伤程度对理论解的影响。分析表明:中间主应力作用越大,围岩的损伤破裂半径越小,切向应力峰值距离巷道越近;脆性强弱对围岩应力分布的影响只局限在脆性损伤区内,围岩的脆性越强,损伤破裂半径越大,脆性损伤区内的切向应力随深度的增大而增大;围岩的残余强度越小,松动破裂程度越大,损伤破裂半径越大,切向应力峰值向围岩深部转移。 展开更多
关键词 脆性损伤 中间主应力 巷道围岩应力 残余强度 损伤破裂半径
在线阅读 下载PDF
上覆煤层开采对下方巷道的稳定性影响分析 被引量:4
2
作者 薛学贵 姜清 《中国煤炭》 北大核心 2012年第7期42-45,共4页
分析了上覆煤层工作面开采过程中产生的支承压力对下方轨道大巷产生的影响。通过理论计算工作面底板最大破坏深度为18.57m。结合工程地质条件,运用大型数值模拟软件ABAQUS建立三维计算模型对开采过程进行模拟,发现工作面开采会使轨道大... 分析了上覆煤层工作面开采过程中产生的支承压力对下方轨道大巷产生的影响。通过理论计算工作面底板最大破坏深度为18.57m。结合工程地质条件,运用大型数值模拟软件ABAQUS建立三维计算模型对开采过程进行模拟,发现工作面开采会使轨道大巷周边围岩应力提高很多,尤其是顶板范围内的应力水平上升约6MPa。 展开更多
关键词 上覆煤层 煤层开采 下方巷道 巷道围岩应力 数值模拟
在线阅读 下载PDF
二次采动巷道锚杆(索)支护效应分析 被引量:3
3
作者 代生福 杨志兵 +2 位作者 孟宪志 姜鹏飞 潘杨 《中国煤炭》 北大核心 2016年第5期57-61,共5页
采用数值模拟和现场监测的方法分析了14103麻家梁煤矿辅运副巷在经历二次采动应力的影响下,巷道锚杆(索)的支护效应。数值模拟分析14103辅运副巷采用高预应力支护可有效改善巷道支护应力场;现场监测发现锚杆、锚索杆体应力受14102工作... 采用数值模拟和现场监测的方法分析了14103麻家梁煤矿辅运副巷在经历二次采动应力的影响下,巷道锚杆(索)的支护效应。数值模拟分析14103辅运副巷采用高预应力支护可有效改善巷道支护应力场;现场监测发现锚杆、锚索杆体应力受14102工作面回采影响先急剧增加后趋于稳定,再经历14103工作面回采影响虽部分杆体应力有所下降,但仍能保持有效支护作用;14103辅运副巷浅部锚杆索支护范围内的3 m处围岩始终保持较强的承载能力,较深部5 m处围岩已进入塑性区,深部8 m和10 m围岩始终具有较强的承载能力。辅运副巷经历二次采动影响后,顶底板移近量为390 mm,两帮移近量为280 mm。 展开更多
关键词 采动应力 巷道支护 锚杆索支护 预紧力 巷道围岩应力 数值模拟
在线阅读 下载PDF
Response models of weakly consolidated soft rock roadway under different interior pressures considering dilatancy effect 被引量:6
4
作者 赵增辉 王渭明 王磊 《Journal of Central South University》 SCIE EI CAS 2013年第12期3736-3744,共9页
Surrounding rocks of weakly consolidated soft rock roadway show obvious strain softening and dilatancy effects after excavation. A damage coefficient concerning modulus attenuation was defined. Response models of stre... Surrounding rocks of weakly consolidated soft rock roadway show obvious strain softening and dilatancy effects after excavation. A damage coefficient concerning modulus attenuation was defined. Response models of stress and displacement of surrounding rock of soft rock roadway and analytical expressions to calculate plastic zones under different interior pressures and non-uniform original rock stresses were derived based on damage theories and a triple linear elastic-plastic strain softening model. Influence laws of dilatancy gradient on damage development, distributions of stresses and displacement in plastic region were analyzed. Interior pressure conditions to develop plastic region under different origin rock stresses were established and their influences on plastic region distribution were also discussed. The results show that the order of maximum principle stress is exchanged between ~0 and trr with the increase of interior pressure P0, which causes distributions of plastic zone and stress shift. Dilatancy effect which has great influences on the damage propagation and displacements in plastic region has little effect on the size of plastic region and stress responses. The conclusions provide a theoretical basis for a reasonable evaluation of stability and effective supporting of weakly consolidated soft rock roadway. 展开更多
关键词 weakly consolidated soft rock roadway dilatancy effect modulus damage coefficient cave interior pressure responsemodel
在线阅读 下载PDF
Numerical simulation study on hard-thick roof inducing rock burst in coal mine 被引量:13
5
作者 HE Jiang 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第9期2314-2320,共7页
In order to reveal the dynamic process of hard-thick roof inducing rock burst, one of the most common and strongest dynamic disasters in coal mine, the numerical simulation is conducted to study the dynamic loading ef... In order to reveal the dynamic process of hard-thick roof inducing rock burst, one of the most common and strongest dynamic disasters in coal mine, the numerical simulation is conducted to study the dynamic loading effect of roof vibration on roadway surrounding rocks as well as the impact on stability. The results show that, on one hand, hard-thick roof will result in high stress concentration on mining surrounding rocks; on the other hand, the breaking of hard-thick roof will lead to mining seismicity, causing dynamic loading effect on coal and rock mass. High stress concentration and dynamic loading combination reaches to the mechanical conditions for the occurrence of rock burst, which will induce rock burst. The mining induced seismic events occurring in the roof breaking act on the mining surrounding rocks in the form of stress wave. The stress wave then has a reflection on the free surface of roadway and the tensile stress will be generated around the free surface. Horizontal vibration of roadway surrounding particles will cause instant changes of horizontal stress of roadway surrounding rocks; the horizontal displacement is directly related to the horizontal stress but is not significantly correlated with the vertical stress; the increase of horizontal stress of roadway near surface surrounding rocks and the release of elastic deformation energy of deep surrounding coal and rock mass are immanent causes that lead to the impact instability of roadway surrounding rocks. The most significant measures for rock burst prevention are controlling of horizontal stress and vibration strength.Key words 展开更多
关键词 hard-thick roof rock burst numerical simulation horizontal stress stress wave
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部