A simple hydrothermal process followed by heat treatment was applied to the preparation of spinel Li1.05Mn1.95O4. In this process, electrolytic manganese dioxide(EMD) and LiOH·H2O were used as starting materials....A simple hydrothermal process followed by heat treatment was applied to the preparation of spinel Li1.05Mn1.95O4. In this process, electrolytic manganese dioxide(EMD) and LiOH·H2O were used as starting materials. The physiochemical properties of the synthesized samples were investigated by thermogravimetry-differential scanning calorimetry(TG-DSC), X-ray diffractometry(XRD), and scanning electronic microscopy(SEM). The results show that the hydrothermally synthesized precursor is an essential amorphous. The precursor can be easily transferred to spinel powders with a homogeneous structure and a regularly-shaped morphology by heat treatment. Li1.05Mn1.95O4 powder obtained by heat treating the precursor at 430 °C for 12 h and then calcining at 800 °C for 12 h shows an excellent cycling performance with an initial charge capacity of 118.2 mA·h·g-1 obtained at 0.5C rate and 93.8% of its original value retained after 100 cycles.展开更多
基金Project(50174058)supported by the National Natural Science Foundation of ChinaProject(2011A025)supported by the Glorious Laurel Scholar Program of Guangxi Zhuang Autonomous Region,China
文摘A simple hydrothermal process followed by heat treatment was applied to the preparation of spinel Li1.05Mn1.95O4. In this process, electrolytic manganese dioxide(EMD) and LiOH·H2O were used as starting materials. The physiochemical properties of the synthesized samples were investigated by thermogravimetry-differential scanning calorimetry(TG-DSC), X-ray diffractometry(XRD), and scanning electronic microscopy(SEM). The results show that the hydrothermally synthesized precursor is an essential amorphous. The precursor can be easily transferred to spinel powders with a homogeneous structure and a regularly-shaped morphology by heat treatment. Li1.05Mn1.95O4 powder obtained by heat treating the precursor at 430 °C for 12 h and then calcining at 800 °C for 12 h shows an excellent cycling performance with an initial charge capacity of 118.2 mA·h·g-1 obtained at 0.5C rate and 93.8% of its original value retained after 100 cycles.