期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进灰狼算法的自动导航小车控制策略 被引量:6
1
作者 石雅凯 陈晓静 荣峰 《科学技术与工程》 北大核心 2023年第23期9965-9972,共8页
针对灰狼算法(grey wolf optimizer,GWO)易陷入局部最优、后期收敛速度慢等问题,通过引入改进Tent混沌映射反向学习策略和非线性收敛因子,并加入差分进化的变异、交叉、选择操作,提出一种改进的差分灰狼优化算法(improved differential ... 针对灰狼算法(grey wolf optimizer,GWO)易陷入局部最优、后期收敛速度慢等问题,通过引入改进Tent混沌映射反向学习策略和非线性收敛因子,并加入差分进化的变异、交叉、选择操作,提出一种改进的差分灰狼优化算法(improved differential evolution grey wolf optimizer,IDE-GWO)。将改进算法应用于优化自动导航小车(automated guided vehicle,AGV)的比例积分微分(proportion integration differentiation,PID)控制参数,并与其他几种算法进行对比。Simulink仿真实验结果表明:该改进算法优化PID参数的控制效果明显优于其他智能优化算法,能够有效地提升AGV轨迹跟踪性能,使得AGV实际轨迹能较好拟合目标轨迹。 展开更多
关键词 Tent混沌映射反向学习策略 差分进化灰狼优化 非线性收敛因子 PID控制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部