A new conservative finite difference scheme is presented based on the numerical analysis for an initialboundary value problem of a class of Schroedinger equation with the wave operator. The scheme can be linear and im...A new conservative finite difference scheme is presented based on the numerical analysis for an initialboundary value problem of a class of Schroedinger equation with the wave operator. The scheme can be linear and implicit or explicit based on the parameter choice. The initial value after discretization has second-order accuracy that is consistent with the scheme accuracy. The existence and the uniqueness of the difference solution are proved. Based on the priori estimates and an inequality about norms, the stability and the convergence of difference solutions with the second-order are proved in the energy norm. Experimental results demonstrate the efficiency of the new scheme.展开更多
This paper presents an explicit difference scheme with accuracy and branching stability for solving onedimensional parabolic type equation by the method of undetermined parameters and its truncation error is O(△t4+△...This paper presents an explicit difference scheme with accuracy and branching stability for solving onedimensional parabolic type equation by the method of undetermined parameters and its truncation error is O(△t4+△x4). The stability condition is r=a△t/△x2<1/2.展开更多
In this paper,a implicit difference scheme is proposed for solving the equation of one_dimension parabolic type by undetermined paameters.The stability condition is r=αΔt/Δx 2 1/2 and the truncation error is o(...In this paper,a implicit difference scheme is proposed for solving the equation of one_dimension parabolic type by undetermined paameters.The stability condition is r=αΔt/Δx 2 1/2 and the truncation error is o(Δt 4+Δx 4) It can be easily solved by double sweeping method.展开更多
A family of high_order accuracy explicit difference schemes for solving 2_dimension parabolic P.D.E. are constructed. Th e stability condition is r=Δt/Δx 2=Δt/Δy 2【1/2 and the truncation err or is O(Δt 3+Δx...A family of high_order accuracy explicit difference schemes for solving 2_dimension parabolic P.D.E. are constructed. Th e stability condition is r=Δt/Δx 2=Δt/Δy 2【1/2 and the truncation err or is O(Δt 3+Δx 4).展开更多
A class of high resolution positivity preserving Boltzmann type difference schemes for one and two dimensional Euler equations is studied. First, the relation between Boltzmann and Euler equations is analyzed. By usi...A class of high resolution positivity preserving Boltzmann type difference schemes for one and two dimensional Euler equations is studied. First, the relation between Boltzmann and Euler equations is analyzed. By using a kind of special interpolation, the high resolution Boltzmann type difference scheme is constructed. Finally, numerical tests show that the schemes are effective and useful.展开更多
The gas-droplet two-phase reacting flow in a model combustor with the V-gutter flame holder is studied by an Eulerian-Lagrangian large-eddy simulation (LES) approach. The k-equation subgrid-scale model is used to simu...The gas-droplet two-phase reacting flow in a model combustor with the V-gutter flame holder is studied by an Eulerian-Lagrangian large-eddy simulation (LES) approach. The k-equation subgrid-scale model is used to simulate the subgrid eddy viscosity, and the eddy-break-up (EBU) combustion subgrid-scale model is used to determine the chemical reaction rate. A two-step turbulent combustion subgrid-scale model is employed for calculating carbon monoxide CO concentration, and the NO subgrid-scale pollutant formation model for the evaluation of the rate of NO formation. The heat flux model is applied to the prediction of radiant heat transfer. The gas phase is solved with the SIMPLE algorithm and a hybrid scheme in the staggered grid system. The liquid phase equations are solved in a Lagrangian frame in reference of the particle-source-in-cell (PSIC) algorithm. From simulation results, the exchange of mass, moment and energy between gas and particle fields for the reacting flow in the afterburner with a V-gutter flame holder can be obtained. By the comparison of experimental and simulation results, profile temperature and pollutant of the outlet are quite in agreement with experimental data. Results show that the LES approach for predicting the two-phase instantaneous reacting flow and pollutant emissions in the afterburner is feasible.展开更多
The high order compact d if ference method is developed for solving the perturbation equations based on Navi er Stokes equations, and is used in studying complex evolution processes from w all negative pulse to the ...The high order compact d if ference method is developed for solving the perturbation equations based on Navi er Stokes equations, and is used in studying complex evolution processes from w all negative pulse to the turbulent coherent structure in the channel flow. Th is method contains three dimensional coupling difference scheme with high accur acy and high resolution, and the high order time splitting methods. Compared with the general spectral method, the method can be used to research turbule nt coherent structure under more general boundary conditions and in flow domains . In this paper, the generation and evolution of the turbulent coherent structur es ind uced by wall pulse in the channel flow are simulated, and the basic characterist ics and rules of the turbulent coherent structure are shown. Computational r esults indicate that a wall negative pulse is more convenient than the resonant three wave model.展开更多
In the article, the fully discrete finite difference scheme for a type of nonlinear reaction-diffusion equation is established. Then the new function space is introduced and the stability problem for the finite differ...In the article, the fully discrete finite difference scheme for a type of nonlinear reaction-diffusion equation is established. Then the new function space is introduced and the stability problem for the finite difference scheme is discussed by means of variational approximation method in this function space. The approach used is of a simple characteristic in gaining the stability condition of the scheme.展开更多
This paper deals with the special nonlinear reaction-diffusion equation. The finite difference scheme with incremental unknowns approximating to the differential equation (2.1) is set up by means of introducing incr...This paper deals with the special nonlinear reaction-diffusion equation. The finite difference scheme with incremental unknowns approximating to the differential equation (2.1) is set up by means of introducing incremental unknowns methods. Through the stability analyzing for the scheme, it was shown that the stability conditions of the finite difference schemes with the incremental unknowns are greatly improved when compared with the stability conditions of the corresponding classic difference scheme.展开更多
The truncation error of improved Cotes formula is presented in this paper. It also displays an analysis on convergence order of improved Cotes formula. Examples of numerical calculation is given in the end.
This paper presents truncation errors among Corrector Formula for left Rectangular rule and Corrector Formula for middle Rectangular rule respectively. It also displays an analysis on convergence order of compound cor...This paper presents truncation errors among Corrector Formula for left Rectangular rule and Corrector Formula for middle Rectangular rule respectively. It also displays an analysis on convergence order of compound corrector formulas for rectangular rule. Examples of numerical calculation have validated theoretical analysis.展开更多
Aircraft flying close to the ground benefit from enhanced efficiency owing to decreased induced drag and increased lift. In this study, a mathematical model is developed to simulate the takeoff of a wing near the grou...Aircraft flying close to the ground benefit from enhanced efficiency owing to decreased induced drag and increased lift. In this study, a mathematical model is developed to simulate the takeoff of a wing near the ground using an Iterative Boundary Element Method (IBEM) and the finite difference scheme. Two stand-alone sub-codes and a mother code, which enables communication between the sub-codes, are developed to solve for the self-excitation of the Wing-In-Ground (WIG) effect. The aerodynamic force exerted on the wing is calculated by the first sub-code using the IBEM, and the vertical displacement of the wing is calculated by the second sub-code using the finite difference scheme. The mother code commands the two sub-codes and can solve for the aerodynamics of the wing and operating height within seconds. The developed code system is used to solve for the force, velocity, and displacement of an NACA6409 wing at a 4° Angle of Attack (AoA) which has various numerical and experimental studies in the literature. The effects of thickness and AoA are then investigated and conclusions were drawn with respect to generated results. The proposed model provides a practical method for understanding the flight dynamics and it is specifically beneficial at the pre-design stages of a WIG effect craft.展开更多
文摘A new conservative finite difference scheme is presented based on the numerical analysis for an initialboundary value problem of a class of Schroedinger equation with the wave operator. The scheme can be linear and implicit or explicit based on the parameter choice. The initial value after discretization has second-order accuracy that is consistent with the scheme accuracy. The existence and the uniqueness of the difference solution are proved. Based on the priori estimates and an inequality about norms, the stability and the convergence of difference solutions with the second-order are proved in the energy norm. Experimental results demonstrate the efficiency of the new scheme.
文摘This paper presents an explicit difference scheme with accuracy and branching stability for solving onedimensional parabolic type equation by the method of undetermined parameters and its truncation error is O(△t4+△x4). The stability condition is r=a△t/△x2<1/2.
文摘In this paper,a implicit difference scheme is proposed for solving the equation of one_dimension parabolic type by undetermined paameters.The stability condition is r=αΔt/Δx 2 1/2 and the truncation error is o(Δt 4+Δx 4) It can be easily solved by double sweeping method.
文摘A family of high_order accuracy explicit difference schemes for solving 2_dimension parabolic P.D.E. are constructed. Th e stability condition is r=Δt/Δx 2=Δt/Δy 2【1/2 and the truncation err or is O(Δt 3+Δx 4).
文摘A class of high resolution positivity preserving Boltzmann type difference schemes for one and two dimensional Euler equations is studied. First, the relation between Boltzmann and Euler equations is analyzed. By using a kind of special interpolation, the high resolution Boltzmann type difference scheme is constructed. Finally, numerical tests show that the schemes are effective and useful.
文摘The gas-droplet two-phase reacting flow in a model combustor with the V-gutter flame holder is studied by an Eulerian-Lagrangian large-eddy simulation (LES) approach. The k-equation subgrid-scale model is used to simulate the subgrid eddy viscosity, and the eddy-break-up (EBU) combustion subgrid-scale model is used to determine the chemical reaction rate. A two-step turbulent combustion subgrid-scale model is employed for calculating carbon monoxide CO concentration, and the NO subgrid-scale pollutant formation model for the evaluation of the rate of NO formation. The heat flux model is applied to the prediction of radiant heat transfer. The gas phase is solved with the SIMPLE algorithm and a hybrid scheme in the staggered grid system. The liquid phase equations are solved in a Lagrangian frame in reference of the particle-source-in-cell (PSIC) algorithm. From simulation results, the exchange of mass, moment and energy between gas and particle fields for the reacting flow in the afterburner with a V-gutter flame holder can be obtained. By the comparison of experimental and simulation results, profile temperature and pollutant of the outlet are quite in agreement with experimental data. Results show that the LES approach for predicting the two-phase instantaneous reacting flow and pollutant emissions in the afterburner is feasible.
文摘The high order compact d if ference method is developed for solving the perturbation equations based on Navi er Stokes equations, and is used in studying complex evolution processes from w all negative pulse to the turbulent coherent structure in the channel flow. Th is method contains three dimensional coupling difference scheme with high accur acy and high resolution, and the high order time splitting methods. Compared with the general spectral method, the method can be used to research turbule nt coherent structure under more general boundary conditions and in flow domains . In this paper, the generation and evolution of the turbulent coherent structur es ind uced by wall pulse in the channel flow are simulated, and the basic characterist ics and rules of the turbulent coherent structure are shown. Computational r esults indicate that a wall negative pulse is more convenient than the resonant three wave model.
文摘In the article, the fully discrete finite difference scheme for a type of nonlinear reaction-diffusion equation is established. Then the new function space is introduced and the stability problem for the finite difference scheme is discussed by means of variational approximation method in this function space. The approach used is of a simple characteristic in gaining the stability condition of the scheme.
文摘This paper deals with the special nonlinear reaction-diffusion equation. The finite difference scheme with incremental unknowns approximating to the differential equation (2.1) is set up by means of introducing incremental unknowns methods. Through the stability analyzing for the scheme, it was shown that the stability conditions of the finite difference schemes with the incremental unknowns are greatly improved when compared with the stability conditions of the corresponding classic difference scheme.
文摘The truncation error of improved Cotes formula is presented in this paper. It also displays an analysis on convergence order of improved Cotes formula. Examples of numerical calculation is given in the end.
文摘This paper presents truncation errors among Corrector Formula for left Rectangular rule and Corrector Formula for middle Rectangular rule respectively. It also displays an analysis on convergence order of compound corrector formulas for rectangular rule. Examples of numerical calculation have validated theoretical analysis.
基金Supported by Yildiz Technical University Scientific Research Projects Coordination Department under Project No.2013-10-01-KAP02
文摘Aircraft flying close to the ground benefit from enhanced efficiency owing to decreased induced drag and increased lift. In this study, a mathematical model is developed to simulate the takeoff of a wing near the ground using an Iterative Boundary Element Method (IBEM) and the finite difference scheme. Two stand-alone sub-codes and a mother code, which enables communication between the sub-codes, are developed to solve for the self-excitation of the Wing-In-Ground (WIG) effect. The aerodynamic force exerted on the wing is calculated by the first sub-code using the IBEM, and the vertical displacement of the wing is calculated by the second sub-code using the finite difference scheme. The mother code commands the two sub-codes and can solve for the aerodynamics of the wing and operating height within seconds. The developed code system is used to solve for the force, velocity, and displacement of an NACA6409 wing at a 4° Angle of Attack (AoA) which has various numerical and experimental studies in the literature. The effects of thickness and AoA are then investigated and conclusions were drawn with respect to generated results. The proposed model provides a practical method for understanding the flight dynamics and it is specifically beneficial at the pre-design stages of a WIG effect craft.