期刊文献+
共找到51篇文章
< 1 2 3 >
每页显示 20 50 100
基于季节性(差分整合)自回归移动平均模型的广西乙类传染病发病情况预测 被引量:1
1
作者 韦雪梅 杨晓祥 +2 位作者 韦雪芹 李娟 袁宗祥 《内科》 2023年第3期209-214,共6页
目的应用季节性(差分整合)自回归移动平均(SARIMA)模型预测广西乙类传染病发病情况。方法将2011年1月至2022年5月广西乙类传染病月报告发病数据作为训练集构建时间序列,拟合和构建SARIMA预测模型;以2022年6月至11月的广西乙类传染病月... 目的应用季节性(差分整合)自回归移动平均(SARIMA)模型预测广西乙类传染病发病情况。方法将2011年1月至2022年5月广西乙类传染病月报告发病数据作为训练集构建时间序列,拟合和构建SARIMA预测模型;以2022年6月至11月的广西乙类传染病月报告发病数据作为测试集对模型进行测试。结果广西乙类传染病的发病情况呈季节性规律,最优预测模型为SARIMA(3,1,3)(2,0,0)_(12),其预测效果平均相对误差为7.99%,预测发病例数95%CI均包含了实际发病例数。结论SARIMA(3,1,3)(2,0,0)_(12)模型能较好地拟合广西乙类传染病的发病情况,可用于疫情的短期监测。 展开更多
关键词 广西壮族自治区 乙类传染病 季节性(差分整合)自回归移动平均模型 疾病预测
在线阅读 下载PDF
基于小波分解和ARIMA-GARCH-GRU组合模型的制造业PMI预测 被引量:1
2
作者 陆文星 任环宇 +1 位作者 梁昌勇 李克卿 《工业工程》 2024年第1期86-95,127,共11页
制造业采购经理人指数(PMI)是反映国家经济运行情况的重要指标,而传统预测模型对该类时序数据预测精度不高。针对制造业PMI指数的非线性、波动性和数据量少的特点,提出一种基于一维离散小波变换进行数据预处理的组合模型。时序数据经过... 制造业采购经理人指数(PMI)是反映国家经济运行情况的重要指标,而传统预测模型对该类时序数据预测精度不高。针对制造业PMI指数的非线性、波动性和数据量少的特点,提出一种基于一维离散小波变换进行数据预处理的组合模型。时序数据经过小波变换,由整合移动平均自回归–广义自回归条件异方差模型(ARIMA-GARCH)处理稳态低频数据,门控循环单元(GRU)处理波动性强的高频数据,将各频段预测结果进行融合得到最终预测结果。为验证模型有效性,选取一定数据量的PMI指数进行实验。结果表明,与其他常见模型对比,本文构建的组合模型具有较好的预测精度与性能,平均绝对误差(MAE)、均方根误差(RMSE)、平均绝对百分比误差(MAPE)分别达到0.00329、0.004162、0.65%。 展开更多
关键词 采购经理人指数(PMI) 小波分解 整合移动平均自回归模型(arima) 广义的自回归条件异方差模型(GARCH) 门控循环单元(GRU)
在线阅读 下载PDF
基于ARIMA-TCN混合模型的高速铁路时间同步方法
3
作者 陈永 詹芝贤 张薇 《铁道学报》 EI CAS CSCD 北大核心 2024年第6期90-100,共11页
列控系统作为高速铁路的核心系统,保持其系统的时间同步对于行车安全至关重要。针对现有时间同步方法易受时变上下行传输时延、随机时钟跳变等影响,导致主从时钟偏移估计不准确的问题,提出一种基于差分自回归移动平均-时域卷积神经网络(... 列控系统作为高速铁路的核心系统,保持其系统的时间同步对于行车安全至关重要。针对现有时间同步方法易受时变上下行传输时延、随机时钟跳变等影响,导致主从时钟偏移估计不准确的问题,提出一种基于差分自回归移动平均-时域卷积神经网络(ARIMA-TCN)混合模型的高速铁路时间同步方法。首先,根据上下行链路传输速率的不对称比,建立高速铁路时钟的数学理论和实际观测模型。然后,使用拉依达准则识别处理跳变异常值,完成实际时间序列的预处理。再次,使用ARIMA模型平滑时间序列中不确定时延带来的噪声抖动,获得平稳的时间序列。最后,通过提出的注意力增强TCN模型进行预测补偿,完成时钟偏移的补偿校正。通过实验仿真,得到基站区间内位置、基站间距以及车速对高速铁路时间同步的影响性分析。实验结果表明:与对比方法相比,所提方法补偿后的均方根误差较最小二乘法减少了75%、较最大似然估计方法误差减少了44.4%,较BP神经网络方法误差减少了16.7%,验证所提方法具有更低的同步误差和更高的同步精度。 展开更多
关键词 时间同步 精确时钟协议 差分自回归移动平均模型 注意力增强时域卷积网络 时间补偿
在线阅读 下载PDF
基于WPD-ARIMA-GARCH组合模型的酱卤肉制品安全风险区间预测 被引量:3
4
作者 尹佳 黄茜 +7 位作者 陈翔 陈晨 陈锂 张涛 徐成 黄亚平 郭鹏程 文红 《食品科学》 EI CAS CSCD 北大核心 2024年第3期176-184,共9页
针对传统确定性预测不能提供不确定性信息的难题,本研究提出了一种点估计和区间估计组合预测模型,并将其创新性地应用在食品安全风险预警领域。在点估计部分,使用小波包分解(wavelet packet decomposition,WPD)对周风险等级序列分解后,... 针对传统确定性预测不能提供不确定性信息的难题,本研究提出了一种点估计和区间估计组合预测模型,并将其创新性地应用在食品安全风险预警领域。在点估计部分,使用小波包分解(wavelet packet decomposition,WPD)对周风险等级序列分解后,应用差分自回归移动平均(autoregressive integrated moving average,ARIMA)模型进行预测;在区间估计部分,使用广义自回归条件异方差(generalized autoregressive conditional heteroskedast,GARCH)模型对残差进行预测。本实验将建立的WPD-ARIMA-GARCH组合模型运用于某地区酱卤肉制品的风险预测,结果表明2019年的3月底和7月底该地区的酱卤肉制品安全风险较高,与实际情况相符;同时,该模型在10个不同地区的酱卤肉制品风险预测中,均方误差、平均绝对误差和平均绝对百分比误差分别为1.626、0.806和20.824;其90%置信区间的预测区间平均宽度和覆盖宽度标准值均为0.024,可以覆盖所有真实值。该模型具有较高的预测精度和较低的误差,能对酱卤肉制品质量安全起到风险防控作用,可为日常食品安全监管提供相应的技术支持。 展开更多
关键词 酱卤肉制品 小波包分解 差分自回归移动平均模型 广义自回归条件异方差模型 区间估计
在线阅读 下载PDF
基于CEEMDAN-GMDH-ARIMA的大坝变形预测模型研究 被引量:4
5
作者 程小龙 张斌 +1 位作者 刘相杰 刘陶胜 《人民黄河》 CAS 北大核心 2024年第1期146-150,共5页
为提高大坝变形预测精度,针对大坝变形数据的复杂性和非线性等特征,基于自适应噪声完备集成经验模态分解(CEEMDAN)、数据处理群集法(GMDH)和差分自回归移动平均模型算法(ARIMA)进行大坝变形预测研究。采用CEEMDAN将大坝变形原始数据分... 为提高大坝变形预测精度,针对大坝变形数据的复杂性和非线性等特征,基于自适应噪声完备集成经验模态分解(CEEMDAN)、数据处理群集法(GMDH)和差分自回归移动平均模型算法(ARIMA)进行大坝变形预测研究。采用CEEMDAN将大坝变形原始数据分解为高频随机分量、中频周期分量和低频趋势分量,再分别采用GMDH模型、ARIMA模型对高中频分量、低频分量进行预测,建立基于CEEMDAN-GMDH-ARIMA的大坝变形预测模型。以江西上犹江水电站为例,将该模型预测结果与反向传播(BP)、径向基函数(RBF)、GMDH和CEEMDAN-GMDH模型的预测结果进行对比分析。结果表明:CEEMDAN-GMDH-ARIMA模型的均方根误差(E_(RMS))、平均绝对误差(E_(MA))、相关系数(r)分别为0.048 mm、0.035 mm、0.994,均优于BP、RBF、GMDH、CEEMDAN-GMDH模型,模型预测效果最好,能够很好地体现监测点水平位移变化趋势。 展开更多
关键词 自适应噪声完备集成经验模态分解 数据处理群集法 差分自回归移动平均模型算法 大坝 变形预测 江西上犹江水电站
在线阅读 下载PDF
基于ICEEMDAN分解的多维时间序列干旱预测模型性能评估 被引量:2
6
作者 韦余鑫 李巧 +3 位作者 卢春雷 陶洪飞 马合木江·艾合买提 姜有为 《灌溉排水学报》 2025年第3期94-103,共10页
【目的】评估基于ICEEMDAN分解的多维时间序列干旱模型预测性能,为干旱预测提供新思路。【方法】以新疆三屯河灌区为研究区域,基于碾盘庄站1980—2023年逐月降水数据,计算1、3、6、9、12、24个月时间尺度的标准化降水指数(SPI),构建自... 【目的】评估基于ICEEMDAN分解的多维时间序列干旱模型预测性能,为干旱预测提供新思路。【方法】以新疆三屯河灌区为研究区域,基于碾盘庄站1980—2023年逐月降水数据,计算1、3、6、9、12、24个月时间尺度的标准化降水指数(SPI),构建自回归差分移动平均模型(ARIMA)、门控循环单元网络(GRU)、长短期记忆网络(LSTM)、改进的完全自适应噪声集合经验模态分解ICEEMDAN-ARIMA、ICEEMDAN-GRU和ICEEMDAN-LSTM组合模型,利用6种预测模型对多时间尺度SPI进行预测,借助均方根误差(RMSE)、平均绝对误差(MAE)、决定系数(R2)对所有模型预测精度进行评价。【结果】6种模型的预测精度均随时间尺度的增加而逐步提高,在24个月时间尺度下达到最高;ICEEMDAN能有效平稳时间数据,提升模型预测精度;6种模型的预测性能排序为:ICEEMDAN-ARIMA>ICEEMDAN-GRU>ICEEMDAN-LSTM>ARIMA>GRU>LSTM。【结论】基于ICEEMDAN算法的组合模型在干旱预测中表现出色,其中ICEEMDAN-ARIMA模型优于其他单一及组合模型,最有利于干旱预测。 展开更多
关键词 ICEEMDAN 长短期记忆网络 差分自回归移动平均模型 门控循环单元网络 标准化降水指数
在线阅读 下载PDF
使用快速傅里叶变换优化周期参数的EMD-FFT-SARIMA光伏发电预测模型
7
作者 熊川羽 廖晓红 +5 位作者 何诗英 陈然 王巍 臧楠 王瀛 肖梦涵 《强激光与粒子束》 CAS CSCD 北大核心 2024年第8期117-123,共7页
根据分布式能源工业园区的光伏电力单元特点,对园区光伏发电功率预测模型进行优化,为后续的调度策略提供数据支持。针对经验模式分解(EMD)与季节性差分自回归移动平均模型(SARIMA)相组合的EMD-SARIMA预测模型中,原始数据经过EMD分解得... 根据分布式能源工业园区的光伏电力单元特点,对园区光伏发电功率预测模型进行优化,为后续的调度策略提供数据支持。针对经验模式分解(EMD)与季节性差分自回归移动平均模型(SARIMA)相组合的EMD-SARIMA预测模型中,原始数据经过EMD分解得到的各固有本征模态函数(IMF)分量周期计算问题,提出加入快速傅里叶变换(FFT)的周期计算方法,建立EMD-FFT-SARIMA光伏发电功率预测模型。再将每个IMF对应的预测结果进行叠加重构得到最终的预测结果。通过预测结果的误差计算可以发现,加入FFT环节后均方根误差(RMSE)从120.6 MW下降到19.3 MW,平均绝对误差(MAE)从52.87 MW下降到12.3 MW。 展开更多
关键词 经验模式分解 季节性差分自回归移动平均模型 周期计算 固有本征模态函数信号分量 快速傅里叶变换 光伏发电预测
在线阅读 下载PDF
基于差分自回归—随机森林的动车组轮对旋修策略优化研究
8
作者 刘成 朱腾飞 +2 位作者 王紫光 沙智华 张生芳 《铁道机车车辆》 北大核心 2024年第5期132-139,共8页
基于动车组运行里程和轮对尺寸退化过程为非平稳时间序列的特点,将差分自回归移动平均模型(ARIMA)与随机森林算法相结合,对关键尺寸退化趋势影响下的轮对旋修策略优化进行研究。利用ARIMA对运行里程数据进行差分处理,运用基尼系数划分... 基于动车组运行里程和轮对尺寸退化过程为非平稳时间序列的特点,将差分自回归移动平均模型(ARIMA)与随机森林算法相结合,对关键尺寸退化趋势影响下的轮对旋修策略优化进行研究。利用ARIMA对运行里程数据进行差分处理,运用基尼系数划分特征构建随机森林决策树,将轮对历史检测数据划分为训练集和测试集进行训练,以预测均值确定轮对尺寸预测值。以轮对几何尺寸和动力学性能为约束条件,以最长使用寿命、最少旋修次数和平稳性指标为优化目标,构建轮对旋修策略优化模型,并对轮对旋修量和旋修后轮径值进行预测。结果表明,当轮径旋修量为2.5 mm,轮缘厚度在HAi=28.5 mm和HBi=30 mm时旋修策略最佳,轮对寿命可提高31.4%。研究成果可为动车组轮对旋修策略优化提供理论支持。 展开更多
关键词 动车组 轮对旋修 差分自回归移动平均模型 随机森林算法 策略优化
在线阅读 下载PDF
变分模态分解与时间序列模型相结合的结构损伤识别方法研究
9
作者 姚小俊 孙守鹏 +1 位作者 王强 杨小梅 《振动与冲击》 北大核心 2025年第5期131-139,217,共10页
针对准确定位土木工程结构突变损伤的损伤时刻和损伤位置问题,提出了基于变分模态分解(variational mode decomposition,VMD)与差分整合移动平均自回归(autoregressive integration moving average,ARIMA)模型的突变损伤识别方法。首先... 针对准确定位土木工程结构突变损伤的损伤时刻和损伤位置问题,提出了基于变分模态分解(variational mode decomposition,VMD)与差分整合移动平均自回归(autoregressive integration moving average,ARIMA)模型的突变损伤识别方法。首先,利用自回归模型功率谱确定初始频率及需要分解的模态数量,接着通过VMD方法将振动非平稳信号初步分解为多个平稳的分量信号;然后,利用ARIMA模型来拟合各阶信号分量,获取模型残差,再利用ARIMA拟合模型信号分量得到的模型残差确定损伤的具体时刻;最后,利用主成分分析法获取结构的模态振型,构造一个基于频率与振型的损伤指标,结合损伤阈值定位出损伤位置。该方法通过地震激励下十自由度框架模拟算例以及实际简支钢桁梁桥数据进行分析。结果证实,该方法能够用于平稳及非平稳激励下的结构损伤时刻和损伤位置的定位。 展开更多
关键词 损伤识别 变分模态分解(VMD) 差分整合移动平均自回归(arima)模型 自回归模型功率谱 模型残差
在线阅读 下载PDF
基于多元线性回归与ARIMA组合模型的水电功率预测研究 被引量:6
10
作者 李冰箫 张世伟 +1 位作者 郑舒宇 赵志帆 《科学技术创新》 2022年第33期71-74,共4页
提出了一种基于多元线性回归模型与整合移动平均自回归模型(ARIMA)的组合预测模型,运用优化组合的模型预测水电功率。其主要操作是先用多元线性回归模型预测出一个结果,然后再用ARIMA模型预测出一个结果,将两者的结果分别与一个系数相... 提出了一种基于多元线性回归模型与整合移动平均自回归模型(ARIMA)的组合预测模型,运用优化组合的模型预测水电功率。其主要操作是先用多元线性回归模型预测出一个结果,然后再用ARIMA模型预测出一个结果,将两者的结果分别与一个系数相乘再相加,得出一个组合模型。实验结果表明,该组合模型在预测精度方面有一定程度的提高,具有一定的实用价值。 展开更多
关键词 水电功率预测 多元线性回归模型 整合移动平均自回归模型
在线阅读 下载PDF
基于H-P滤波法、ARIMA和VAR模型的库区滑坡位移综合预测 被引量:24
11
作者 孟蒙 陈智强 +2 位作者 黄达 曾彬 陈赐金 《岩土力学》 EI CAS CSCD 北大核心 2016年第S2期552-560,共9页
受库水位涨落及降雨等影响,库区滑坡位移表现出明显的周期性。基于位移时间序列分析,将滑坡监测位移分解为趋势项与周期项之和。趋势项反映滑坡变形的长期趋势,其主要受滑坡本身地质结构等因素影响。周期项反映滑坡变形的波动性,其主要... 受库水位涨落及降雨等影响,库区滑坡位移表现出明显的周期性。基于位移时间序列分析,将滑坡监测位移分解为趋势项与周期项之和。趋势项反映滑坡变形的长期趋势,其主要受滑坡本身地质结构等因素影响。周期项反映滑坡变形的波动性,其主要受外部因素影响。以三峡库区巫山塔坪滑坡为例,考虑长江水位与降雨量影响,采用H-P滤波法从滑坡位移中分解出趋势项及周期项,利用差分自回归滑动平均模型(ARIMA)对趋势项进行平稳处理并计算趋势项预测值,利用向量自回归模型(VAR)计算周期项预测值。趋势项预测值与周期项预测值之和为滑坡位移预测值。与实际监测值及多种方法分析比较,表明综合预测所得结果能较好反映滑坡变形的趋势性和波动性,位移预测效果较好。 展开更多
关键词 滑坡 变形预测 时间序列 H-P滤波法 差分自回归滑动平均(arima)模型 向量自回归(VAR)模型
在线阅读 下载PDF
基于改进PSO-ARIMA模型的船舶纵摇角度预测 被引量:6
12
作者 王培良 张婷 肖英杰 《上海海事大学学报》 北大核心 2021年第1期39-43,共5页
针对自回归移动平均(auto regressive moving average,ARMA)模型在船舶纵摇角度预测时不具有普遍适用性问题,提出使用自回归综合移动平均(auto regressive integrated moving average,ARIMA)模型进行纵摇角度预测,并采用改进粒子群优化(... 针对自回归移动平均(auto regressive moving average,ARMA)模型在船舶纵摇角度预测时不具有普遍适用性问题,提出使用自回归综合移动平均(auto regressive integrated moving average,ARIMA)模型进行纵摇角度预测,并采用改进粒子群优化(particle swarm optimization,PSO)算法对模型定阶。对纵摇角度值序列数据进行平稳性检验和差分运算,确定ARIMA模型的适用性;采用具有针对性适应度评价函数的PSO算法进行模型定阶,并优化PSO算法的权重计算方法。通过仿真对比验证本文所提方法的科学性和有效性。仿真结果表明:采用改进PSO算法进行模型定阶的方法能够有效提升模型的预测精度,具有更好的预测效果。 展开更多
关键词 自回归综合移动平均(arima)模型 粒子群优化(PSO)算法 船舶纵摇 纵摇预测
在线阅读 下载PDF
基于SARIMA模型的安徽省CPI预测 被引量:4
13
作者 敖希琴 龚玉杰 +1 位作者 汪金婷 郑阳 《蚌埠学院学报》 2017年第3期83-86,共4页
收集了安徽省2000年1月至2016年6月的居民消费价格指数(CPI)数据,并借助于统计分析工具Eviews软件进行相关实验。通过CPI的时序图和ADF检验得到该CPI序列为非平稳序列,并且通过序列的相关图,建立了SARIMA时间序列模型,然后通过AIC、SC... 收集了安徽省2000年1月至2016年6月的居民消费价格指数(CPI)数据,并借助于统计分析工具Eviews软件进行相关实验。通过CPI的时序图和ADF检验得到该CPI序列为非平稳序列,并且通过序列的相关图,建立了SARIMA时间序列模型,然后通过AIC、SC准则和残差分析确定了最优的预测模型,利用预测模型对安徽省CPI进行了短期预测。实验结果表明:安徽省CPI具有季节性的特征,利用SARIMA模型建模得到的预测模型,总体预测效果较好,且具有一定的现实意义。 展开更多
关键词 居民消费价格指数 季节性差分自回归移动平均模型 预测
在线阅读 下载PDF
中国纺织品服装出口ARIMA模型分析 被引量:1
14
作者 张小燕 《北京服装学院学报(自然科学版)》 CAS 2003年第2期67-72,共6页
利用协整自回归移动平均模型分析了我国纺织品服装出口变化规律,对未来几年中国纺织品服装出口总额变化趋势进行了预测.
关键词 中国 纺织品服装出口 arima模型 自回归移动平均模型 出口总额 预测
在线阅读 下载PDF
基于调和分析和ARIMA-SVR的组合潮汐预测模型 被引量:8
15
作者 刘娇 史国友 +4 位作者 朱凯歌 张加伟 李爽 陈作桓 王伟 《上海海事大学学报》 北大核心 2019年第3期93-99,共7页
为提高潮汐预测精度,解决单一调和分析预测精度不高的问题,提出一种基于调和分析和自回归综合移动平均-支持向量回归机(autoregressive integrated moving average support vector machine for regression,ARIMA-SVR)的组合潮汐预测模... 为提高潮汐预测精度,解决单一调和分析预测精度不高的问题,提出一种基于调和分析和自回归综合移动平均-支持向量回归机(autoregressive integrated moving average support vector machine for regression,ARIMA-SVR)的组合潮汐预测模型。潮汐分析中,潮汐可认为是由受引潮力影响的天文潮位和受环境因素影响的非线性水位的叠加。采用小波分析对潮汐样本数据进行去噪处理,使用调和分析法计算天文潮位,以调和分析法计算产生的残差作为非线性水位样本数据,并使用ARIMA-SVR模型进行潮高计算,最后将两部分的计算结果进行线性求和得到最终的潮汐预测值。利用美国旧金山港口实测潮汐数据进行预测仿真,结果表明,该组合模型解决了调和分析忽略非线性影响的问题,提高了潮汐预测准确率,可行且高效。 展开更多
关键词 潮汐预测 组合模型 调和分析法 支持向量回归机(SVR) 自回归综合移动平均(arima)模型
在线阅读 下载PDF
基于ARIMA模型的福州市雷暴日趋势分析 被引量:3
16
作者 刘隽 张烨方 黄岩彬 《华侨大学学报(自然科学版)》 CAS 北大核心 2011年第5期511-514,共4页
在分析ARIMA(p,d,q)预测模型的基础上,以福州市1961-2006年的雷暴日为时间序列基础,通过对该序列进行平稳性分析、差分处理、自相关、偏自相关系数计算与绘图、ARIMA建模、参数估计、假设检验及模型预测,将ARIMA模型运用在雷暴日的趋势... 在分析ARIMA(p,d,q)预测模型的基础上,以福州市1961-2006年的雷暴日为时间序列基础,通过对该序列进行平稳性分析、差分处理、自相关、偏自相关系数计算与绘图、ARIMA建模、参数估计、假设检验及模型预测,将ARIMA模型运用在雷暴日的趋势分析上.研究结果表明,ARIMA能很好地拟合计算出未来短时段内的数据,可以应用于实际的雷暴日分析. 展开更多
关键词 雷暴日 差分自回归移动平均模型 预测 短期 福州市
在线阅读 下载PDF
混凝土坝变形Wavelet-EGM-PE-ARIMA组合预测模型 被引量:7
17
作者 汪程 杨光 +3 位作者 祖安君 陈悦 尹文中 邱小秦 《长江科学院院报》 CSCD 北大核心 2019年第8期67-72,共6页
混凝土坝的总变形可以归结为由水压和温度变化引起的变形以及随时间发展的变形。其中,水压变形和温度变形体现为总变形中的周期性分量,而时效变形体现为总变形中的趋势性分量。借助复合建模思想,提出一种混凝土坝变形Wavelet-EGM-PE-AR... 混凝土坝的总变形可以归结为由水压和温度变化引起的变形以及随时间发展的变形。其中,水压变形和温度变形体现为总变形中的周期性分量,而时效变形体现为总变形中的趋势性分量。借助复合建模思想,提出一种混凝土坝变形Wavelet-EGM-PE-ARIMA组合预测模型。首先利用小波多分辨分析功能,分解出大坝变形时间序列中的趋势性项、周期性项;其次,运用EGM模型实现对趋势性项的有效预测,采用周期外延模型实现对周期性项的有效预测,在此基础上,利用ARIMA模型实现对EGM模型和周期外延模型残差项的有效预测;最后通过某工程实例,检验所提出模型的有效性。计算结果表明:该组合模型充分考虑大坝各变形分量的变化规律,并基于此,实现对大坝变形时间序列有效的拟合和预测,且其拟合和预测精度均明显优于传统统计模型。 展开更多
关键词 混凝土坝 变形预测 小波分析 EGM(1 1)模型 周期外延法 差分自回归移动平均模型
在线阅读 下载PDF
矿井瓦斯浓度Lagrange-ARIMA实时预测模型研究 被引量:16
18
作者 王鹏 伍永平 +2 位作者 王栓林 宋超 吴学明 《煤炭科学技术》 CAS CSCD 北大核心 2019年第4期141-146,共6页
矿井瓦斯浓度监测是瓦斯事故最直接有效的防控手段之一,为提高监测信息的利用效率,提出了一种瓦斯浓度Lagrange-ARIMA实时预测模型。首先应用拉伊达准则实现瓦斯浓度监测缺失值构建,其次采用滑动Lagrange插值方法进行缺失值预测,最后基... 矿井瓦斯浓度监测是瓦斯事故最直接有效的防控手段之一,为提高监测信息的利用效率,提出了一种瓦斯浓度Lagrange-ARIMA实时预测模型。首先应用拉伊达准则实现瓦斯浓度监测缺失值构建,其次采用滑动Lagrange插值方法进行缺失值预测,最后基于自回归差分移动平均模型(ARIMA)序贯学习,依据L1范数最小化原则,确定出Lagrange-ARIMA序贯学习窗口合适尺度,进行瓦斯浓度实时预测。实例仿真显示:Lagrange-ARIMA实时预测模型处理瓦斯浓度时间序列缺失值平均误差为1.397%,当序贯学习窗口尺度为85时,预测的瓦斯浓度序列平均绝对误差(MAE)为0.011 8。相比传统ARIMA静态学习模型,建立的Lagrange-ARIMA模型学习窗口尺度降低了90.3%,建模复杂度显著降低,MAE降低了16.3%,预测精度能满足现场需求。 展开更多
关键词 数据预处理 LAGRANGE插值 瓦斯浓度 自回归差分移动平均模型(arima) 实时预测
在线阅读 下载PDF
基于EMD-ARIMA组合模型的长江航运干散货运价指数预测 被引量:2
19
作者 杨银花 金雁 +1 位作者 汪敏 张矢宇 《武汉理工大学学报(交通科学与工程版)》 2022年第5期801-805,共5页
针对长江航运干散货运价指数(YBFI)样本点少、周期性不明显、非线性,以及非平稳特性,从分析数据内在波动性出发,提出一种基于经验模态分解(EMD)-差分整合移动平均自回归(ARIMA)组合模型.对比传统ARIMA模型、简单季节预测两种方法,EMD可... 针对长江航运干散货运价指数(YBFI)样本点少、周期性不明显、非线性,以及非平稳特性,从分析数据内在波动性出发,提出一种基于经验模态分解(EMD)-差分整合移动平均自回归(ARIMA)组合模型.对比传统ARIMA模型、简单季节预测两种方法,EMD可对YBFI序列进行降噪分解,保留数据的内在特性;分解后的序列用ARIMA模型、三角函数拟合,效果良好.重组后分析误差,发现该组合预测模型与传统单一模型相比误差较小,预测精度更高. 展开更多
关键词 长江航运干散货运价指数(YBFI) 经验模态分解(EMD) 差分整合移动平均自回归(arima) 组合预测
在线阅读 下载PDF
BP神经网络和ARIMA模型的变权组合电离层TEC预报 被引量:6
20
作者 田祥雨 刘立龙 +2 位作者 杨可可 黎峻宇 陈雨田 《桂林理工大学学报》 CAS 北大核心 2019年第4期899-904,共6页
针对电离层总电子含量(TEC)非线性、非平稳性的特性,提出基于BP神经网络和差分自回归移动平均模型(ARIMA)的最优非负变权组合预报模型,并将其应用于TEC预报。利用IGS中心提供的不同经纬度的电离层平静期、活跃期TEC数据,分别采用BP神经... 针对电离层总电子含量(TEC)非线性、非平稳性的特性,提出基于BP神经网络和差分自回归移动平均模型(ARIMA)的最优非负变权组合预报模型,并将其应用于TEC预报。利用IGS中心提供的不同经纬度的电离层平静期、活跃期TEC数据,分别采用BP神经网络模型、ARIMA模型和变权组合模型对TEC进行5 d预报。实验结果表明:在电离层平静期和活跃期变权组合模型预报5 d的平均相对精度分别为94.7%和88.9%,其中预报残差小于3 TECu的分别达到89.3%和78.5%,较单一模型的预报精度有明显提高。 展开更多
关键词 BP神经网络 差分自回归移动平均模型 电离层 变权组合
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部