期刊文献+
共找到328篇文章
< 1 2 17 >
每页显示 20 50 100
基于自回归积分滑动平均模型的无线传感网络通信传输信号延迟消除方法
1
作者 崔蕾 王同 《传感技术学报》 北大核心 2025年第3期543-549,共7页
为了解决受环境影响无线传感网络通信传输信号的延迟问题,提出了一种传输信号延迟消除的方法。将自回归积分滑动平均模型(ARIMA)和小波神经网络(WNN)相结合,进行通信传输信号延迟的组合预测。根据延迟预测结果设计传输信号延迟消除流程... 为了解决受环境影响无线传感网络通信传输信号的延迟问题,提出了一种传输信号延迟消除的方法。将自回归积分滑动平均模型(ARIMA)和小波神经网络(WNN)相结合,进行通信传输信号延迟的组合预测。根据延迟预测结果设计传输信号延迟消除流程的步骤和约束条件,并以此构建无线传感网络通信传输的优化目标函数,引入免疫克隆蛙跳算法对目标函数进行求解,获取最优的传输方案。仿真分析表明,所提方法的延迟预测误差和端到端延迟误差低于0.01 s,能量消耗最大值为6.4 W,平均丢包率最大值为0.286%。上述结果证明了所提方法可以有效准确预测和消除无线传感网络通信传输信号延迟。 展开更多
关键词 无线传感网络 传输信号 延迟消除 回归积分滑动平均模型 小波神经网络
在线阅读 下载PDF
基于差分自回归滑动平均模型的风电场短期风速预测 被引量:8
2
作者 孟天星 张厚升 《科学技术与工程》 北大核心 2013年第33期9813-9818,共6页
目前,风力发电的并网规模越来越大;但是鉴于风力发电特有的间歇性和随机性,难免会对电力系统的稳定运行和电能质量造成巨大影响;也就限制了风电的发展速度与规模。对风力发电场的风速进行中、长、短期的预测可以在一定程度上有效地解决... 目前,风力发电的并网规模越来越大;但是鉴于风力发电特有的间歇性和随机性,难免会对电力系统的稳定运行和电能质量造成巨大影响;也就限制了风电的发展速度与规模。对风力发电场的风速进行中、长、短期的预测可以在一定程度上有效地解决该问题。依据风速序列的自相关性以及时序性,提出了一种基于时间序列分析的风电场短期风速预测ARIMA模型。重点讨论了建模的过程、模型的识别、模型的定阶和模型参数的估计。最后结合风电场实际,对比于持续法预测,给出了相应的预测结果和误差分析,验证了所提出的ARIMA模型用于风电场风速预测的可行性。 展开更多
关键词 风电 风速预测 时间序列 回归滑动平均 差分回归滑动平均
在线阅读 下载PDF
基于SARIMA-SVM模型的季节性PM_(2.5)浓度预测
3
作者 宋英华 徐亚安 张远进 《计算机工程》 北大核心 2025年第1期51-59,共9页
空气污染是城市环境治理的主要问题之一,而PM_(2.5)是影响空气质量的重要因素。针对传统时间序列预测模型对PM_(2.5)浓度预测缺少季节性因素分析,预测精度不够高的问题,提出一种基于机器学习的季节性差分自回归滑动平均-支持向量机(SARI... 空气污染是城市环境治理的主要问题之一,而PM_(2.5)是影响空气质量的重要因素。针对传统时间序列预测模型对PM_(2.5)浓度预测缺少季节性因素分析,预测精度不够高的问题,提出一种基于机器学习的季节性差分自回归滑动平均-支持向量机(SARIMA-SVM)融合模型。该融合模型为串联型融合模型,将数据拆分为线性部分与非线性部分。SARIMA模型在差分自回归滑动平均(ARIMA)模型的基础上增加了季节性因素提取参数,能有效分析PM_(2.5)浓度数据的季节性规律变化趋势,较好地预测数据未来的线性变化趋势。结合SVM模型对预测数据的残差序列进行优化,利用滑动步长预测法确定残差序列的最优预测步长,通过网格搜索确定最优模型参数,实现对PM_(2.5)浓度数据的长期预测,同时提高整体预测精度。通过对武汉市近5年的PM_(2.5)浓度监测数据进行分析,结果表明该融合模型的预测准确率相较于单一模型有很大提升,在相同的实验环境下比单一的ARIMA、Auto ARIMA、SARIMA模型分别提升了99%、99%、98%,稳定性也更好,为PM_(2.5)浓度预测研究提供了新的思路。 展开更多
关键词 季节性差分回归滑动平均 支持向量机 融合模型 PM_(2.5)浓度 季节性预测
在线阅读 下载PDF
浙江省月度电力需求的变分模态分解-自适应模糊神经网络-差分整合移动平均自回归组合预测模型及应用 被引量:5
4
作者 董知周 黄建平 +6 位作者 许晓敏 李铮 纪正森 高恬 吴庚奇 夏洪涛 陈浩 《科学技术与工程》 北大核心 2021年第12期4957-4967,共11页
为提高电力需求预测的精度,提出了一种将变分模态分解(variational mode decomposition,VMD)和自适应模糊神经网络(adaptive network-based fuzzy inference system,ANFIS)相结合的方法并应用到月度电力需求预测中。首先将原始数据通过... 为提高电力需求预测的精度,提出了一种将变分模态分解(variational mode decomposition,VMD)和自适应模糊神经网络(adaptive network-based fuzzy inference system,ANFIS)相结合的方法并应用到月度电力需求预测中。首先将原始数据通过VMD分解成有限带宽的子模态序列,选用差分整合移动平均自回归模型(autoregressive integrated moving average model,ARIMA)、ANFIS、经验模态分解(empirical mode decomposition,EMD)与ANFIS相结合和VMD-ANFIS几种模型进行预测结果对比。结果表明:相比直接利用ANFIS模型得到的预测结果,增加VMD分解过程能有效减小预测误差。说明所应用的VMD-ANFIS方法更具优越性,可以获得更好的预测结果。 展开更多
关键词 电力需求预测 差分整合移动平均回归模型(ARIMA) 变分模态分解 自适应模糊神经网络
在线阅读 下载PDF
模型和数据联合驱动的ARIMA-IDSSA-LSSVM建筑安全事故预测
5
作者 曹红梅 陈元 《自然灾害学报》 北大核心 2025年第2期129-139,共11页
针对传统单一模型在解决建筑安全事故预测问题存在精度低等问题,考虑模型和数据联合驱动方式,提出一种结合差分自回归移动平均(autoregressive integrated moving average,ARIMA)模型和改进的自适应樽海鞘优化最小二乘支持向量机(improv... 针对传统单一模型在解决建筑安全事故预测问题存在精度低等问题,考虑模型和数据联合驱动方式,提出一种结合差分自回归移动平均(autoregressive integrated moving average,ARIMA)模型和改进的自适应樽海鞘优化最小二乘支持向量机(improved adaptive salp swarm algorithm optimized least squares support vector machine,IDSSA-LSSVM)的组合预测模型。首先利用ARIMA模型获得时序数据中线性部分,利用IDSSA-LSSVM模型分析ARIMA模型获得的残差,获得时序数据中非线性部分;然后通过线性部分和非线性部分相加获得最终组合预测值;最后通过2010—2020年房屋市政工程生产安全事故数据对所提算法进行验证。结果表明,所提预测模型在E_(rmse)上较其他算法分别下降73.73%、77.21%、46.09%、46.80%、78.19%,在E_(mae)上较其他算法分别下降74.20%、77.44%、48.15%、48.85%、77.50%,在E_(mape)上较其他算法分别下降84.95%、87.77%、75.97%、88.49%、80.27%。在不同规模的数据集下,文中算法在E_(rmse)指标下均最优。同时能够通过预测未来阶段事故,提供辅助决策。表明ARIMA-SSA-LSSVM组合模型能够充分挖掘建筑安全事故数据的隐藏信息,在准确性、泛化性和应用性3个角度均表现不错,优势明显。 展开更多
关键词 建筑安全 事故预测 联合驱动 差分回归移动平均模型 支持向量机
在线阅读 下载PDF
基于自回归滑动平均模型的风力发电容量预测 被引量:14
6
作者 冬雷 王丽婕 +2 位作者 郝颖 胡国飞 廖晓钟 《太阳能学报》 EI CAS CSCD 北大核心 2011年第5期617-622,共6页
利用时间序列分析法对富锦风电场风电机组发电容量时间序列进行分析,通过长自回归模型法建立了基于这些数据的自回归模型(AR)和自回归滑动平均模型(ARMA)。在建模过程中,采用3种定阶方法分别建立了不同的ARMA模型,并在对比分析了不同模... 利用时间序列分析法对富锦风电场风电机组发电容量时间序列进行分析,通过长自回归模型法建立了基于这些数据的自回归模型(AR)和自回归滑动平均模型(ARMA)。在建模过程中,采用3种定阶方法分别建立了不同的ARMA模型,并在对比分析了不同模型的优缺点之后对其进行加权平均综合处理,最终得到较理想的预测模型,使风力发电容量短期预测的归一化平均绝对误差降到7%以内。 展开更多
关键词 风电容量预测 回归滑动平均模型 长自回归 定阶 加权平均
在线阅读 下载PDF
统计模式识别和自回归滑动平均模型在设备剩余寿命预测中的应用 被引量:8
7
作者 廖雯竹 潘尔顺 +1 位作者 王莹 奚立峰 《上海交通大学学报》 EI CAS CSCD 北大核心 2011年第7期1000-1005,共6页
为了对设备预知性维护研究提供支持,采用统计模式识别(SPR)方法对设备进行性能评估,获取设备健康指标;再运用自回归滑动平均模型(ARMA)对设备剩余寿命进行预测,建立了基于设备健康状况的设备剩余寿命预测模型.对生产过程中刀具加工设备... 为了对设备预知性维护研究提供支持,采用统计模式识别(SPR)方法对设备进行性能评估,获取设备健康指标;再运用自回归滑动平均模型(ARMA)对设备剩余寿命进行预测,建立了基于设备健康状况的设备剩余寿命预测模型.对生产过程中刀具加工设备寿命预测进行分析和验证结果表明,该设备评估和预测方法是有效且实用的. 展开更多
关键词 健康指标 统计模式识别 回归滑动平均模型 剩余寿命 预测
在线阅读 下载PDF
基于混合自回归滑动平均潜周期模型的短期电价预测 被引量:11
8
作者 曾勇红 王锡凡 冯宗建 《西安交通大学学报》 EI CAS CSCD 北大核心 2008年第2期184-188,共5页
应用混合自回归滑动平均潜周期模型对短期电价序列进行了预测.对消除了趋势影响的电价序列,经离散傅里叶变换转换为复值潜周期模型,采用一种简单的周期图检测方法计算电价序列的周期特征参数.为了计及历史信息对当前状态的影响,采用自... 应用混合自回归滑动平均潜周期模型对短期电价序列进行了预测.对消除了趋势影响的电价序列,经离散傅里叶变换转换为复值潜周期模型,采用一种简单的周期图检测方法计算电价序列的周期特征参数.为了计及历史信息对当前状态的影响,采用自回归滑动平均模型拟合残差随机分量,采用赤池信息准则确定模型的阶数,参数则由矩估计得到.该模型不要求预先假设电价序列的周期尺度,周期的个数和大小由模型计算确定,方法简单.采用美国宾夕法尼亚、新泽西、马里兰电力市场的实际电价数据对模型进行了检验,验证了模型的有效性. 展开更多
关键词 潜周期 电价预测 回归滑动平均模型
在线阅读 下载PDF
改进的差分自回归移动平均模型的共轭梯度参数估计法 被引量:6
9
作者 单锐 刘雅宁 刘文 《河南科技大学学报(自然科学版)》 CAS 北大核心 2015年第4期85-90,9,共6页
为了提高差分自回归移动平均模型的拟合精度,本文结合已有的文献,借助无约束优化方法来解决此模型中的参数估计问题。主要提出了一种改进的差分自回归移动平均模型参数的优化估计法,并对提出的算法进行详细说明,在强Wolfe条件下对全局... 为了提高差分自回归移动平均模型的拟合精度,本文结合已有的文献,借助无约束优化方法来解决此模型中的参数估计问题。主要提出了一种改进的差分自回归移动平均模型参数的优化估计法,并对提出的算法进行详细说明,在强Wolfe条件下对全局收敛性进行了证明。该方法保证了迭代计算的收敛性,并且提高了收敛的速度。数值试验结果说明:该算法是一种较为有效的方法,与其他方法比较,参数估计值更为显著,提高了预测精度。 展开更多
关键词 差分回归移动平均模型(ARIMA模型) 回归滑动平均模型(ARMA模型) 参数估计 无约束问题 共轭梯度法 WOLFE搜索
在线阅读 下载PDF
多元自回归滑动平均模型辨识与电力系统自适应阻尼控制 被引量:14
10
作者 陆超 吴超 +2 位作者 王天 陈湘 于同伟 《中国电机工程学报》 EI CSCD 北大核心 2010年第19期31-36,共6页
传统基于离线模型参数和典型运行方式设计的电力系统阻尼控制器存在适应性问题,提出一种基于辨识的自适应控制器设计方法,可解决一般自适应控制中快速性和准确性要求之间的矛盾。所用的多元自回归滑动平均模型(auto regressive moving a... 传统基于离线模型参数和典型运行方式设计的电力系统阻尼控制器存在适应性问题,提出一种基于辨识的自适应控制器设计方法,可解决一般自适应控制中快速性和准确性要求之间的矛盾。所用的多元自回归滑动平均模型(auto regressive moving averaging vector,ARMAV)辨识在电网正常运行过程中针对由负荷等随机扰动引起的类噪声信号进行;在综合考虑辨识误差、阻尼要求和稳定裕度基础上,提出阻尼控制零极点配置基本原则,并设计相应的遗传算法优化方法。为了充分检验上述辨识与控制系统的效果,基于广域测量平台对其进行软硬件实现,并在东北电网简化系统中进行实时数字仿真(real time digital simulation,RTDS)测试,实验结果说明了所提方法的可行性和有效性。 展开更多
关键词 类噪声信号 回归滑动平均模型辨识 零极点配置 遗传算法 自适应控制
在线阅读 下载PDF
基于自回归滑动平均模型和粒子群算法的地震子波提取 被引量:7
11
作者 戴永寿 牛慧 +1 位作者 彭星 王少水 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第3期47-50,57,共5页
基于自回归滑动平均(ARMA)模型理论,对地震子波进行参数化建模,采用累积量拟合法精确估计参数,使地震子波提取问题最终归结为一个多参数、多极值的非线性函数优化问题。对基本粒子群算法进行改进,通过自适应参数调整和边界约束,克服基... 基于自回归滑动平均(ARMA)模型理论,对地震子波进行参数化建模,采用累积量拟合法精确估计参数,使地震子波提取问题最终归结为一个多参数、多极值的非线性函数优化问题。对基本粒子群算法进行改进,通过自适应参数调整和边界约束,克服基本粒子群算法易陷入局部极值的缺陷,同时提高算法寻优精度和计算效率。仿真数据试验结果验证了改进的粒子群算法在地震子波提取方法中的有效性和稳定性。 展开更多
关键词 地震数据处理 回归滑动平均模型 地震子波 系统辨识 累积量拟合 粒子群算法
在线阅读 下载PDF
一种确定自回归滑动平均模型最小阶次的新方法 被引量:6
12
作者 邢铭宗 赵飞 +1 位作者 姜歌东 梅雪松 《西安交通大学学报》 EI CAS CSCD 北大核心 2011年第12期99-103,共5页
针对经典Akaike信息准则(AIC)在模型定阶时缺少阶次范围下界而引起的模态遗漏问题,根据稳态图和AIC准则,提出了一种自回归滑动平均模型在模态参数辨识中的定阶方法.该方法先利用稳态图能够鉴别真假模态的特点,进行各阶模态频率的估计和... 针对经典Akaike信息准则(AIC)在模型定阶时缺少阶次范围下界而引起的模态遗漏问题,根据稳态图和AIC准则,提出了一种自回归滑动平均模型在模态参数辨识中的定阶方法.该方法先利用稳态图能够鉴别真假模态的特点,进行各阶模态频率的估计和均值的求取,进而根据模态稳定性判定准则计算出阶次范围下界,最后利用AIC准则确定最优的模型阶次.仿真结果表明,与经典AIC准则相比,所提出的方法定阶后进行模态参数的辨识,不仅识别出了经典AIC准则遗漏的第3阶模态参数(误差为0.18%),而且使第1、2阶模态参数的精度分别提高了2.31%和6.31%.对悬臂梁的模态实验结果表明:该方法不仅辨识出了经典AIC准则遗漏的第1阶模态参数,使其误差仅为0.62%,而且也大大提高了其他各阶模态参数的精度. 展开更多
关键词 Akaike信息准则 回归滑动平均模型 稳态图 模态参数
在线阅读 下载PDF
乘积季节自回归积分滑动平均模型在长沙市手足口病发病率预测中的应用 被引量:10
13
作者 谈婷 陈立章 刘富强 《中南大学学报(医学版)》 CAS CSCD 北大核心 2014年第11期1170-1176,共7页
目的:建立长沙市手足口病发病率的乘积季节自回归积分滑动平均模型(autoregressive integrated moving average model,ARIMA),探讨乘积季节ARIMA模型在手足口病疫情预测的可行性。方法:运用EVIEWS 6.0软件对长沙市2008年5月至2013年8月... 目的:建立长沙市手足口病发病率的乘积季节自回归积分滑动平均模型(autoregressive integrated moving average model,ARIMA),探讨乘积季节ARIMA模型在手足口病疫情预测的可行性。方法:运用EVIEWS 6.0软件对长沙市2008年5月至2013年8月的手足口病发病率资料建立乘积季节ARIMA模型,以2013年9月至2014年2月的发病资料作为模型预测效果的检验样本,最后再用所得到的模型对2014年3月至2014年8月的月发病率进行预测。结果:经过序列平稳化、模型识别以及模型诊断后,建立乘积季节ARIMA模型(1,0,1)×(0,1,1)12,模型拟合度R2=0.81,预测均方根误差为8.29,平均绝对误差为5.83。结论:乘积季节ARIMA模型是一种较好的预测模型,所建模型拟合度较好,能为手足口病的防治工作提供参考。 展开更多
关键词 手足口病 时间序列 乘积季节自回归积分滑动平均模型
在线阅读 下载PDF
非线性时间序列建模的混合自回归滑动平均模型 被引量:17
14
作者 王红军 田铮 《控制理论与应用》 EI CAS CSCD 北大核心 2005年第6期875-881,共7页
提出了一类用于非线性时间序列建模的混合自回归滑动平均模型(MARMA).该模型是由K个平稳或非平稳的ARMA分量经过混合得到的.讨论了MARMA模型的平稳性条件和自相关函数.给出了MARMA模型参数估计的期望极大化(expectation maximization)算... 提出了一类用于非线性时间序列建模的混合自回归滑动平均模型(MARMA).该模型是由K个平稳或非平稳的ARMA分量经过混合得到的.讨论了MARMA模型的平稳性条件和自相关函数.给出了MARMA模型参数估计的期望极大化(expectation maximization)算法.运用贝叶斯信息准则(Bayes information criterion)来选择该模型.MARMA模型分布形式富于变化的特征使得它能够对具有多峰分布以及条件异方差的序列进行建模.通过两个实例验证了该模型,并和其他模型进行比较,结果表明MARMA模型能够更好地描述这些数据的特征. 展开更多
关键词 混合自回归滑动平均模型 自相关 平稳性 期望极大化算法 条件异方差
在线阅读 下载PDF
SAR图像压缩的多尺度自回归滑动平均模型方法 被引量:4
15
作者 纪建 田铮 徐海霞 《电子学报》 EI CAS CSCD 北大核心 2005年第12期2111-2114,共4页
本文研究在无需SAR图像先验知识条件下,基于多尺度自回归滑动平均MARMA模型的SAR图像压缩方法.该方法首先对SAR图像建立MARMA模型,依据MARMA模型对原始图像进行预测,然后对预测的残量进行数据压缩.将此方法用于实际SAR图像压缩,并将基于... 本文研究在无需SAR图像先验知识条件下,基于多尺度自回归滑动平均MARMA模型的SAR图像压缩方法.该方法首先对SAR图像建立MARMA模型,依据MARMA模型对原始图像进行预测,然后对预测的残量进行数据压缩.将此方法用于实际SAR图像压缩,并将基于MARMA模型和多尺度自回归MAR模型的压缩结果与相应的JPEG结果进行比较和分析,说明基于MARMA模型的SAR图像压缩方法既能达到较高的压缩比,又能取得较好的保真度,是一种很有潜力的压缩方法. 展开更多
关键词 SAR图像压缩 多尺度自回归滑动平均模型 残差图像
在线阅读 下载PDF
基于自回归滑动平均模型的玛纳斯河洪水预报 被引量:9
16
作者 马金凤 杨广 《石河子大学学报(自然科学版)》 CAS 2010年第2期242-245,共4页
水文预报作为重要的防洪非工程措施,对位于高寒山区的玛纳斯河流域防汛抢险、水利工程建设和调度具有重要意义。通过对玛纳斯河水文系统的分析,确定出影响玛纳斯河径流量的主要因素,建立了玛纳斯河流域流量预报的自回归滑动平均ARMA(p,q... 水文预报作为重要的防洪非工程措施,对位于高寒山区的玛纳斯河流域防汛抢险、水利工程建设和调度具有重要意义。通过对玛纳斯河水文系统的分析,确定出影响玛纳斯河径流量的主要因素,建立了玛纳斯河流域流量预报的自回归滑动平均ARMA(p,q)模型,对肯斯瓦特水文站实测径流过程进行了预测检验。结果表明,自回归滑动平均模型对实测年径流量有很好的逼近拟合效果,相对误差很小,ARMA(p,q)模型用于径流量预测有较高的精度,是可行的。 展开更多
关键词 回归滑动平均模型 洪水 预报 玛纳斯河
在线阅读 下载PDF
差分自回归移动平均模型在南通市手足口病疫情预测中的应用 被引量:3
17
作者 练维 魏叶 +1 位作者 韩颖颖 帅小博 《南京医科大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第1期59-64,共6页
目的:应用差分自回归移动平均模型(ARIMA)预测南通市手足口病疫情趋势。方法:以2010年1月—2019年6月南通市手足口病分月报告病例数据为基础,构建符合季节性时间序列的ARIMA(p,d,q)×(P,D,Q)S模型,用2019年7—12月全市手足口病月发... 目的:应用差分自回归移动平均模型(ARIMA)预测南通市手足口病疫情趋势。方法:以2010年1月—2019年6月南通市手足口病分月报告病例数据为基础,构建符合季节性时间序列的ARIMA(p,d,q)×(P,D,Q)S模型,用2019年7—12月全市手足口病月发病率为验证数据进行验证,检验模型的预测效果。结果:2010—2019年南通市共报告手足口病90 766例,年平均发病率为124.36/10万,疫情有明显季节性,呈双峰特征,为夏季(5、6、7月)高峰和冬季(11、12月)次高峰;近年来南通市手足口病的病原谱以其他肠道病毒为主;利用ARIMA(1,0,1)(1,1,1)12模型,预测2019年7—12月手足口病发病率分别为7.08/10万、1.81/10万、3.74/10万、7.21/10万、10.71/10万和11.29/10万,与实际发病率相比,两者差异无统计学意义(Z=0.48,P=0.63)。结论:差分自回归移动平均模型能较好地预测手足口病的发病趋势,可用于短期的预警监测。 展开更多
关键词 差分回归移动平均模型 手足口病 预测
在线阅读 下载PDF
SAR图像分割的多尺度自回归滑动平均模型方法 被引量:2
18
作者 徐海霞 田铮 林伟 《西北工业大学学报》 EI CAS CSCD 北大核心 2004年第4期463-466,共4页
给出了合成孔径雷达(syntheticapertureradar简称SAR)图像多尺度自回归滑动平均(multiscaleautoregressivemovingaverage简称MARMA)模型建模的一种新方法。研究了基于MARMA模型的SAR图像多尺度随机特征提取的方法,构造了相应的分类器,... 给出了合成孔径雷达(syntheticapertureradar简称SAR)图像多尺度自回归滑动平均(multiscaleautoregressivemovingaverage简称MARMA)模型建模的一种新方法。研究了基于MARMA模型的SAR图像多尺度随机特征提取的方法,构造了相应的分类器,将这类方法用于实际SAR图像分割,并将MARMA模型与多尺度自回归(multiscaleautoregressive简称MAR)模型的分割结果进行比较,说明SAR图像的MARMA模型分割方法优于MAR模型分割方法;最后给出了评价SAR图像分割结果的区域均匀性指标方法,实际应用结果表明该评价方法是有效的。 展开更多
关键词 多尺度自回归滑动平均模型 SAR图像分割 分割评价标准
在线阅读 下载PDF
采用自回归滑动平均模型的地球自转参数短期预报 被引量:2
19
作者 叶修松 何雨帆 +1 位作者 曾光 郭海 《导航定位学报》 2014年第3期6-9,共4页
根据地球自转参数时间序列的特性,给出了自回归滑动平均模型的识别方法,在自回归滑动平均模型参数估算中采用了长自回归白噪化方法,试验分析表明,采用该方法进行参数估计时具有简便较为有效的特点,同时,该方法的另一个特点是全部求解过... 根据地球自转参数时间序列的特性,给出了自回归滑动平均模型的识别方法,在自回归滑动平均模型参数估算中采用了长自回归白噪化方法,试验分析表明,采用该方法进行参数估计时具有简便较为有效的特点,同时,该方法的另一个特点是全部求解过程都是解线性方程组,避免了非线性运算。为减少地球自转参数时间序列相邻数据的强相关性,先扣除地球自转参数时间序列的趋势项和周期项,再对残差序列进行差分处理,最后利用自回归滑动平均模型对地球自转参数进行短期预报,有效验证了上述算法的可行性及正确性,地球自转参数短期预报结果与地球自转服务产品相当。 展开更多
关键词 回归滑动平均模型 地球自转参数 预报
在线阅读 下载PDF
双自回归滑动平均模型风速预测研究 被引量:6
20
作者 郭鹏 《现代电力》 2009年第6期66-69,共4页
风电场中风速变化的随机性很强。对随机过程的建模和预测,自回归滑动平均模型(ARMA)具有较好的效果。以张家口尚义风电场实测风速构成时间序列样本,首先通过差分处理将原始风速序列变为平稳随机序列,并确定该序列的描述模型为ARMA(0,4)... 风电场中风速变化的随机性很强。对随机过程的建模和预测,自回归滑动平均模型(ARMA)具有较好的效果。以张家口尚义风电场实测风速构成时间序列样本,首先通过差分处理将原始风速序列变为平稳随机序列,并确定该序列的描述模型为ARMA(0,4)。用该模型对验证风速序列进行超前一步预测,得到较好的风速预测效果。为进一步提高预测的精度,对样本序列风速预测的残差再次采用ARMA模型进行建模和预测,并用预测残差来修正风速预测值。对实际风速序列进行预测和验证,结果表明本文提出的双ARMA模型预测可以显著提高风速预测准确性。 展开更多
关键词 风速预测 回归滑动平均模型(ARMA) 残差 风电场 差分
在线阅读 下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部