期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
融合多狩猎协调策略的爬行动物搜索算法 被引量:3
1
作者 力尚龙 刘建华 贾鹤鸣 《计算机应用》 CSCD 北大核心 2024年第9期2818-2828,共11页
爬行动物搜索算法(RSA)具有较强的全局探索能力,但开发能力相对薄弱,在迭代后期无法较好地收敛。针对上述问题,综合教与学优化(TLBO)算法、二次插值的天牛须搜索(BAS)算法和透镜成像反向学习策略,提出一种融合多狩猎协调策略的爬行动物... 爬行动物搜索算法(RSA)具有较强的全局探索能力,但开发能力相对薄弱,在迭代后期无法较好地收敛。针对上述问题,综合教与学优化(TLBO)算法、二次插值的天牛须搜索(BAS)算法和透镜成像反向学习策略,提出一种融合多狩猎协调策略的爬行动物搜索算法(MHCS-RSA)。MHCS-RSA保留了RSA包围阶段(全局探索)和狩猎阶段(局部开发)中狩猎合作的位置更新公式,在狩猎阶段,将狩猎协调融合TLBO算法的学习阶段和二次插值的BAS进行位置更新,以增强算法的开发能力和收敛能力;此外,引入透镜成像反向学习策略以增强算法跳出局部最优的能力。在CEC 2020测试函数上的实验结果表明,MHCS-RSA具有良好的寻优能力、收敛能力以及鲁棒性。最后通过对拉力/压力弹簧设计问题和减速器设计问题的求解,进一步验证了MHCS-RSA求解实际问题的有效性。 展开更多
关键词 爬行动物搜索算法 教与学优化算法 二次插值的天牛须搜索算法 透镜成像反向学习 工程问题求解
在线阅读 下载PDF
融合学习行为策略的改进黑猩猩优化算法 被引量:8
2
作者 贾鹤鸣 林建凯 +3 位作者 吴迪 力尚龙 文昌盛 饶洪华 《计算机工程与应用》 CSCD 北大核心 2023年第16期82-92,共11页
针对黑猩猩优化算法收敛速度慢、寻优精度低以及容易陷入局部最优的问题,提出融合学习行为策略的改进黑猩猩优化算法(modified chimp optimization algorithm,MChOA)。采用准反向学习策略更新种群,增加种群的多样性和随机性,提高算法全... 针对黑猩猩优化算法收敛速度慢、寻优精度低以及容易陷入局部最优的问题,提出融合学习行为策略的改进黑猩猩优化算法(modified chimp optimization algorithm,MChOA)。采用准反向学习策略更新种群,增加种群的多样性和随机性,提高算法全局搜索能力,同时避免算法陷入局部最优。基于黑猩猩学习行为策略,通过随机选择“模仿学习”算子或“情绪感应”算子更新黑猩猩个体位置,增强算法局部开发能力,加快算法的收敛速度。选取16个基准函数以及12个CEC2014进行仿真实验测试,结果表明MChOA与传统ChOA相比具有较高的求解精度和较好的寻优性能。通过两个工程设计问题的求解,证明了MChOA在实际工程问题上也具有较高的实际应用价值。 展开更多
关键词 黑猩猩优化算法 准反向学习 学习行为策略 基准测试函数 工程问题求解
在线阅读 下载PDF
融合联合反向学习与宿主切换机制的䲟鱼优化算法 被引量:3
3
作者 贾鹤鸣 文昌盛 +3 位作者 吴迪 饶洪华 刘庆鑫 力尚龙 《计算机科学与探索》 CSCD 北大核心 2023年第12期2896-2912,共17页
䲟鱼优化算法(ROA)是2021年提出的元启发式优化算法,其模拟了海洋中䲟鱼寄生依附宿主、经验攻击和宿主觅食的行为。ROA的结构简单且易于实现,但全局性稍显不足,易导致算法收敛速度慢甚至后期难以收敛的现象。针对上述问题,在探索阶段加入... 䲟鱼优化算法(ROA)是2021年提出的元启发式优化算法,其模拟了海洋中䲟鱼寄生依附宿主、经验攻击和宿主觅食的行为。ROA的结构简单且易于实现,但全局性稍显不足,易导致算法收敛速度慢甚至后期难以收敛的现象。针对上述问题,在探索阶段加入宿主切换机制,引入新宿主白鲸,提高原算法的探索能力;同时加入联合反向学习策略,增强了算法跳出局部最优的能力,进一步提高了算法的综合优化性能。通过以上改进,提出了一种融合联合反向学习与宿主切换机制的䲟鱼优化算法(IROA)。为了验证IROA的性能与改进优势,将IROA与原始ROA、6种典型的原始算法以及4种关于ROA的改进算法进行对比。通过CEC2020标准测试函数的实验结果表明,IROA具有更强的寻优能力和更高的收敛精度;最后针对汽车防撞性设计问题的求解,进一步验证了IROA的优势和工程适用性。 展开更多
关键词 䲟鱼优化算法 元启发式优化算法 联合反向学习 宿主切换机制 白鲸优化算法 基准函数测试 工程问题求解
在线阅读 下载PDF
基于混沌宿主切换机制的?鱼优化算法
4
作者 贾鹤鸣 力尚龙 +3 位作者 陈丽珍 刘庆鑫 吴迪 郑荣 《计算机应用》 CSCD 北大核心 2023年第6期1759-1767,共9页
鱼优化算法(ROA)的寻优过程包括依附宿主、经验攻击和宿主觅食3种模式,它的探索能力与开发能力较强;但原始算法通过经验攻击切换宿主,导致探索与开发之间平衡较差、收敛较慢且容易陷入局部最优。针对上述问题,提出了一种基于混沌宿主... 鱼优化算法(ROA)的寻优过程包括依附宿主、经验攻击和宿主觅食3种模式,它的探索能力与开发能力较强;但原始算法通过经验攻击切换宿主,导致探索与开发之间平衡较差、收敛较慢且容易陷入局部最优。针对上述问题,提出了一种基于混沌宿主切换机制的改进鱼优化算法(MROA)。首先,设计一种新的宿主切换机制,以更好地平衡探索和开发的能力;然后,为了使鱼初始宿主多样化,引入Tent混沌映射进行种群初始化,进一步优化算法的性能;最后,将MROA与原始ROA和爬行动物搜索算法(RSA)等6种算法在CEC2020测试函数上进行对比实验。分析实验结果可知,MROA求得的最优适应度值、平均适应度值和适应度值标准差分别比ROA、RSA、鲸鱼优化算法(WOA)、哈里斯鹰优化(HHO)算法、精子群优化(SSO)算法、正余弦算法(SCA)和乌燕鸥优化算法(STOA)平均提高了28%、33%和12%。基于CEC2020的测试结果表明,MROA具有良好的寻优能力、收敛能力和鲁棒性;同时,通过求解焊接梁设计问题和多片式离合器制动器设计问题,进一步验证了MROA在工程问题中的有效性。 展开更多
关键词 鱼优化算法 宿主切换机制 Tent混沌映射 基准函数测试 工程问题求解
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部