期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
屋型拓扑粒子群优化算法与工程优化问题求解 被引量:1
1
作者 高铭晗 王丽敏 +2 位作者 黄锐露 张宇飞 李明洋 《吉林大学学报(理学版)》 CAS 北大核心 2024年第6期1384-1390,共7页
针对粒子群优化算法在优化复杂工程问题时存在搜索效率低和易陷入局部最优的问题,提出一种屋型拓扑粒子群优化算法.该算法通过提出屋型拓扑和设计适应其特性的位置更新策略,改善粒子群优化算法信息传递和交流方式,提升算法的收敛速率和... 针对粒子群优化算法在优化复杂工程问题时存在搜索效率低和易陷入局部最优的问题,提出一种屋型拓扑粒子群优化算法.该算法通过提出屋型拓扑和设计适应其特性的位置更新策略,改善粒子群优化算法信息传递和交流方式,提升算法的收敛速率和全局优化能力.在基准函数上的对比实验结果表明,屋型拓扑粒子群算法的寻优精度、收敛速度和稳定性均优于其他4种改进算法.在3个实际工程优化问题上的仿真实验结果进一步验证了该算法的有效性和实用性. 展开更多
关键词 屋型拓扑 粒子群优化算法 工程优化问题 基准函数 仿真实验
在线阅读 下载PDF
工程优化问题中神经网络与进化算法的比较 被引量:18
2
作者 张煜东 吴乐南 吴含前 《计算机工程与应用》 CSCD 北大核心 2009年第3期1-6,共6页
目前工程优化问题不仅种类繁多,而且各自采用的模型与方法迥异。从方法论的高度,将现有工程优化问题分为黑箱优化与白箱优化,然后推出各自的优化模型。对于黑箱优化问题,阐述了前向神经网络在系统逼近上的优势,以及进化算法与BP算法在... 目前工程优化问题不仅种类繁多,而且各自采用的模型与方法迥异。从方法论的高度,将现有工程优化问题分为黑箱优化与白箱优化,然后推出各自的优化模型。对于黑箱优化问题,阐述了前向神经网络在系统逼近上的优势,以及进化算法与BP算法在求解神经网络权值上的优劣;对于白箱优化问题,阐述了进化算法与反馈神经网络的优缺点和目前流行的进化算法及其通用改进策略。通过分析,可以对目前的优化问题,以及神经网络与进化算法在其中的作用,有更加全面的认识。 展开更多
关键词 工程优化问题 前向神经网络 反馈神经网络 进化算法
在线阅读 下载PDF
混合策略改进的鱼鹰优化算法及其工程应用
3
作者 田云娜 李奕轩 王凯欣 《计算机工程与应用》 北大核心 2025年第18期114-131,共18页
针对鱼鹰优化算法存在的全局搜索能力弱、探索与开发不平衡和易陷入局部最优等缺陷,提出一种混合策略改进的鱼鹰优化算法。对于鱼鹰捕鱼失败后的行为设计一种高空翱翔勘探策略,提高算法的全局搜索能力,进而增强算法摆脱局部极值的能力;... 针对鱼鹰优化算法存在的全局搜索能力弱、探索与开发不平衡和易陷入局部最优等缺陷,提出一种混合策略改进的鱼鹰优化算法。对于鱼鹰捕鱼失败后的行为设计一种高空翱翔勘探策略,提高算法的全局搜索能力,进而增强算法摆脱局部极值的能力;在算法的开发阶段引入一种自适应平衡能量因子,平衡算法的探索与开发。为验证所提算法的性能,将其与7种优化算法在CEC2017测试集、CEC2019测试集以及CEC2022测试集上进行实验对比,并对实验结果进行Wilcoxon秩和检验与Friedman检验。实验结果表明,所提算法具有更好的寻优精度、收敛速度以及鲁棒性。通过对12个现实世界工程约束优化问题和机器人路径规划问题进行仿真实验,进一步验证了所提算法的有效性和实用性。 展开更多
关键词 鱼鹰优化算法 高空翱翔勘探 平衡能量因子 工程优化问题 路径规划
在线阅读 下载PDF
改进雪融优化器在多目标优化问题上的应用
4
作者 周宇含 刘庆珍 《计算机工程与设计》 北大核心 2025年第6期1772-1779,共8页
针对雪融优化器(snow ablation optimizer, SAO)在求解部分复杂优化问题时存在的寻优效果不稳定、易陷入局部最优等缺陷,提出一种改进算法——改进雪融优化器(improved snow ablation optimizer, ISAO)。该算法基于改进Tent混沌映射提... 针对雪融优化器(snow ablation optimizer, SAO)在求解部分复杂优化问题时存在的寻优效果不稳定、易陷入局部最优等缺陷,提出一种改进算法——改进雪融优化器(improved snow ablation optimizer, ISAO)。该算法基于改进Tent混沌映射提高种群的多样性,引入折射镜像学习改善寻优方向,并结合莱维飞行策略与贪婪策略增强跳出局部最优的能力。同时,选取了5种目前被广泛应用的智能优化算法作为对照组,在10个基准测试函数上和2个多目标优化问题上进行对比实验,其结果显示ISAO相比于SAO具备更强的优化性能。进一步地,将ISAO和SAO分别应用于实际的工程优化问题,其结果验证了ISAO在解决实际工程优化问题上具有显著优势。 展开更多
关键词 智能优化算法 雪融优化 改进Tent混沌映射 折射镜像学习 莱维飞行 贪婪策略 工程优化问题
在线阅读 下载PDF
求解工程结构优化问题的改进布谷鸟搜索算法 被引量:22
5
作者 陈乐 龙文 《计算机应用研究》 CSCD 北大核心 2014年第3期679-683,共5页
针对布谷鸟搜索算法局部搜索能力不强的缺点,提出一种基于随机局部搜索的改进布谷鸟搜索算法用于求解工程结构优化问题。引入惯性权重以平衡算法的勘探和开采能力;利用随机局部搜索方法对当前最优解进行局部搜索,以加快算法的收敛速度... 针对布谷鸟搜索算法局部搜索能力不强的缺点,提出一种基于随机局部搜索的改进布谷鸟搜索算法用于求解工程结构优化问题。引入惯性权重以平衡算法的勘探和开采能力;利用随机局部搜索方法对当前最优解进行局部搜索,以加快算法的收敛速度。两个工程结构优化问题的实验结果表明了该算法的可行性和有效性。 展开更多
关键词 布谷鸟搜索算法 工程结构优化问题 随机局部搜索 佳点集方法
在线阅读 下载PDF
变分布的量子行为粒子群优化算法求解工程约束优化问题 被引量:4
6
作者 施晓倩 陈祺东 +1 位作者 孙俊 冒钟杰 《计算机应用》 CSCD 北大核心 2020年第5期1382-1388,共7页
针对工程形状设计领域中带有多个约束条件的非线性设计优化问题,提出了一种自适应的基于高斯分布的量子行为粒子群优化(AG-QPSO)算法。通过自适应地调整高斯分布,AG-QPSO算法能够在搜索的初始阶段有很强的全局搜索能力,随着搜索过程的进... 针对工程形状设计领域中带有多个约束条件的非线性设计优化问题,提出了一种自适应的基于高斯分布的量子行为粒子群优化(AG-QPSO)算法。通过自适应地调整高斯分布,AG-QPSO算法能够在搜索的初始阶段有很强的全局搜索能力,随着搜索过程的进行,算法的局部搜索能力逐渐增强,从而满足了算法在搜索过程不同阶段的需要。为了验证算法的有效性,在压力容器和张弦设计问题这两个工程约束优化问题上进行50轮独立实验。实验结果表明,在满足所有约束条件的情况下,AG-QPSO算法在压力容器设计问题上取得了5890.9315的平均解和5885.3328的最优解,在张弦设计问题上取得了0.01096的平均解和0.01096的最优解,远优于标准粒子群优化(PSO)算法、具有量子行为的粒子群优化(QPSO)算法和高斯量子行为粒子群(G-QPSO)算法等现有的算法的结果,同时AG-QPSO算法取得的结果的方差较小,说明该算法具有很好的鲁棒性。 展开更多
关键词 量子行为粒子群优化算法 高斯概率分布 工程约束优化问题 非线性优化
在线阅读 下载PDF
改进蚁狮优化算法及其工程应用 被引量:9
7
作者 陈伟 杨盘隆 吴宣够 《传感技术学报》 CAS CSCD 北大核心 2023年第4期565-574,共10页
针对蚁狮优化算法(ALO)在求解工程优化问题时易陷入局部最优及收敛速度慢等缺陷,提出一种基于Levy飞行和差分进化的改进蚁狮优化算法(LDALO)。改进算法对ALO中的蚂蚁进行差分进化操作,从而改善种群多样性,避免算法陷入局部最优并提高算... 针对蚁狮优化算法(ALO)在求解工程优化问题时易陷入局部最优及收敛速度慢等缺陷,提出一种基于Levy飞行和差分进化的改进蚁狮优化算法(LDALO)。改进算法对ALO中的蚂蚁进行差分进化操作,从而改善种群多样性,避免算法陷入局部最优并提高算法全局搜索能力。精英引导的Levy飞行被用于蚂蚁位置更新,以加快算法收敛速度。改进算法还在蚁狮捕食蚂蚁后对蚁狮进行差分变异,以提高算法的寻优精度。仿真实验基于10个基准函数进行,其结果显示LDALO较其他对比算法收敛速度更快,寻优精度更高。在无线传感器网络覆盖优化、压力容器设计、拉压弹簧设计等工程优化问题中的应用,验证了LDALO的适用性和有效性。 展开更多
关键词 工程优化问题 蚁狮优化算法 差分进化 Levy飞行
在线阅读 下载PDF
改进平衡优化器算法在约束优化问题中的应用 被引量:5
8
作者 李守玉 何庆 陈俊 《计算机科学与探索》 CSCD 北大核心 2023年第5期1075-1088,共14页
针对平衡优化器算法存在种群勘探与开发难以平衡、粒子进化信息不足、容易出现早熟现象等问题,提出改进的平衡优化器算法。首先,根据算法优化进行的迭代阶段采用正弦池策略动态地平衡勘探与开发能力,迭代前期通过固定角频率的正弦递减... 针对平衡优化器算法存在种群勘探与开发难以平衡、粒子进化信息不足、容易出现早熟现象等问题,提出改进的平衡优化器算法。首先,根据算法优化进行的迭代阶段采用正弦池策略动态地平衡勘探与开发能力,迭代前期通过固定角频率的正弦递减进行大范围的全局勘探,扩大算法探索搜索空间中未知区域,增强发现潜藏优质粒子的能力;迭代后期通过变化角频率的正弦递增进行局部开发使勘探与开发自适应平衡,提高算法优化精度。其次,自适应优先引力策略引入当前最优粒子信息克服粒子进化信息匮乏的问题,然后通过融入均匀分布和贝塔分布共同作用丰富种群粒子进化信息,提高粒子之间的信息交换速率,增强粒子逃离局部最优的能力,达到引导种群向全局最优方向快速收敛目的。最后,使用16个基准测试函数、CEC2017函数集、Friedman检验、Wilcoxon秩和检验以及2个现实中的工程约束优化问题测试所提算法的寻优能力。实验结果表明,相比其他新提出的智能算法,所提算法具有更高的优化精度和更快的收敛速度。 展开更多
关键词 平衡优化器算法 勘探与开发 约束工程优化问题
在线阅读 下载PDF
基于Fuch映射的改进白鲸优化算法及应用 被引量:10
9
作者 陈心怡 张孟健 王德光 《计算机工程与科学》 CSCD 北大核心 2024年第8期1482-1492,共11页
针对标准白鲸优化算法(BWO)存在收敛精度低、自适应能力有限和抗停滞能力弱等缺点,从混沌初始化、参数混沌和非线性控制策略3个角度,提出2种基于Fuch映射和动态反向学习的改进白鲸优化算法(CIOEBWO和CPOEBWO)。采用Fuch混沌初始化,提高... 针对标准白鲸优化算法(BWO)存在收敛精度低、自适应能力有限和抗停滞能力弱等缺点,从混沌初始化、参数混沌和非线性控制策略3个角度,提出2种基于Fuch映射和动态反向学习的改进白鲸优化算法(CIOEBWO和CPOEBWO)。采用Fuch混沌初始化,提高算法初始化种群的遍历性,从而提升算法寻优精度和收敛速度;在开发阶段,引入Fuch混沌映射对参数C 1进行动态调节,协调算法的全局搜索和局部搜索,有效提高算法自适应能力;基于上述2种改进方式,分别引入动态反向学习策略,丰富优质个体数量,提升算法整体抗停滞能力。根据8种基本测试函数仿真实验和Friedman秩检验结果可得,改进算法的收敛精度、自适应能力和抗停滞能力均得到了有效提升。与BWO和CIOEBWO相比,CPOEBWO显现出较为优异的性能。此外,从CPOEBWO与常见的6种对比算法的寻优结果可知,CPOEBWO算法有较强的寻优能力和鲁棒性。最后,为展示CPOEBWO算法的适用性和有效性,将其应用于工程优化问题。 展开更多
关键词 白鲸优化算法 Fuch映射 动态反向学习 参数混沌策略 工程优化问题
在线阅读 下载PDF
融合头脑风暴思想的教与学优化算法 被引量:10
10
作者 李丽荣 杨坤 王培崇 《计算机应用》 CSCD 北大核心 2020年第9期2677-2682,共6页
针对教与学优化(TLBO)算法在求解高维问题时表现出的收敛速度慢、解精度低、易陷入于局部最优的问题,提出了一种融合头脑风暴思想的改进教与学优化算法(ITLBOBSO)。在该算法中设计了一种新的“学”算子,并以其替换TLBO算法中的“学”。... 针对教与学优化(TLBO)算法在求解高维问题时表现出的收敛速度慢、解精度低、易陷入于局部最优的问题,提出了一种融合头脑风暴思想的改进教与学优化算法(ITLBOBSO)。在该算法中设计了一种新的“学”算子,并以其替换TLBO算法中的“学”。该算法在种群的迭代过程中,当前个体首先执行“教”算子。随后,在种群中随机选择两个个体,令其中优秀的个体与当前个体执行头脑风暴式学习,提升当前个体的状态。为了赋予算法早期良好的探索能力和后期对新解的开发能力,在该算子的公式中引入柯西变异和一个与迭代次数关联的随机参数。进行的一系列的仿真实验表明,与TLBO算法相比,所提算法在11个Benchmark函数上的解精度、鲁棒性和收敛速度都有大幅度提升。在2个约束工程优化问题上,ITLBOBSO所求得的耗费成本比TLBO算法降低了4个百分点。由此验证了所提出的机制对克服TLBO弱点的有效性,所提算法适合用来求解较高维度的连续优化问题。 展开更多
关键词 教与学优化 头脑风暴 柯西变异 “学”算子 约束工程优化问题
在线阅读 下载PDF
基于自适应竞争学习的教与学优化算法
11
作者 王培崇 冯浩婧 李丽荣 《计算机应用》 CSCD 北大核心 2023年第12期3868-3874,共7页
针对求解较高维度优化问题时教与学优化(TLBO)算法容易出现早熟、解精度降低等问题,提出一种自适应竞争学习教与学优化算法(ITLBOAC)。首先,在“教”算子中引入非线性变化的权重参数,以决定当前个体自身状态的保持能力以及调整当前个体... 针对求解较高维度优化问题时教与学优化(TLBO)算法容易出现早熟、解精度降低等问题,提出一种自适应竞争学习教与学优化算法(ITLBOAC)。首先,在“教”算子中引入非线性变化的权重参数,以决定当前个体自身状态的保持能力以及调整当前个体向教师学习的态度,从而使当前个体在早期更多地向教师学习,以迅速提升自身状态,而后期更多地保持自身状态,以减缓教师对它的影响;其次,以生态学协同竞争机制为基础,引入基于近邻个体间的自适应竞争的“学”算子,从而使当前个体选择它的近邻个体,并且让个体们从协作演化逐渐过渡到竞争学习。在12个Benchmark测试函数上的测试结果表明,相较于其他4种改进TLBO算法,所提算法具有更好的解精度、稳定性和收敛速度,同时相较于TLBO算法有大幅提升,验证了所提算法适合于求解较高维度的连续型优化问题。选择压缩弹簧和三杆桁架设计问题进行测试的结果表明,ITLBOAC获得的最优值分别比TLBO算法下降了3.03%和0.34%。可见,在求解约束工程优化问题时,ITLBOAC同样值得信任。 展开更多
关键词 教与学优化 自适应学习 竞争学习 洛特卡-沃尔泰拉模型 约束工程优化问题
在线阅读 下载PDF
一种以优秀个体记忆位置为导向的改进乌鸦搜索算法
12
作者 张宁 王勇 张伟 《小型微型计算机系统》 CSCD 北大核心 2024年第5期1089-1098,共10页
为了克服乌鸦搜索算法搜索能力弱、易陷入局部最优之不足,提出新的以优秀个体记忆位置为导向的改进乌鸦搜索算法(EICSA):基于个体贮藏食物量之多少,种群中多数个体划归为普通个体、少数贮藏食物量较多的个体划归为优秀个体.优秀个体只... 为了克服乌鸦搜索算法搜索能力弱、易陷入局部最优之不足,提出新的以优秀个体记忆位置为导向的改进乌鸦搜索算法(EICSA):基于个体贮藏食物量之多少,种群中多数个体划归为普通个体、少数贮藏食物量较多的个体划归为优秀个体.优秀个体只在其贮藏食物的巢穴附近开展局部搜索活动.多数普通个体以优秀个体贮藏食物之巢穴为导向,在算法前期以较大步长进行全局探索,保持了种群的多样性;算法后期则以较短步长进行局部开发,使算法的全局探索能力和局部开发能力均得到了增强.通过12个基准函数和3个工程应用问题的数值实验,结果表明EICSA的全局优化能力得到了明显提高,在函数和工程应用问题优化中具有较快的全局收敛速度、较好的优化精度和稳定性. 展开更多
关键词 乌鸦搜索算法(CSA) 智能优化 优秀个体 普通个体 工程约束优化问题
在线阅读 下载PDF
A hybrid cuckoo search algorithm with feasibility-based rule for constrained structural optimization 被引量:5
13
作者 龙文 张文专 +1 位作者 黄亚飞 陈义雄 《Journal of Central South University》 SCIE EI CAS 2014年第8期3197-3204,共8页
Constrained optimization problems are very important as they are encountered in many science and engineering applications.As a novel evolutionary computation technique,cuckoo search(CS) algorithm has attracted much at... Constrained optimization problems are very important as they are encountered in many science and engineering applications.As a novel evolutionary computation technique,cuckoo search(CS) algorithm has attracted much attention and wide applications,owing to its easy implementation and quick convergence.A hybrid cuckoo pattern search algorithm(HCPS) with feasibility-based rule is proposed for solving constrained numerical and engineering design optimization problems.This algorithm can combine the stochastic exploration of the cuckoo search algorithm and the exploitation capability of the pattern search method.Simulation and comparisons based on several well-known benchmark test functions and structural design optimization problems demonstrate the effectiveness,efficiency and robustness of the proposed HCPS algorithm. 展开更多
关键词 constrained optimization problem cuckoo search algorithm pattem search feasibility-based rule engineeringoptimization
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部