期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进YOLOv8n的轻量化工地堆放木材异常检测算法
1
作者
王浩宇
《现代信息科技》
2025年第7期58-63,70,共7页
在工地堆放木材物料时,室外环境容易导致木材表面出现受潮变形、干裂等异常状况。针对现有检测算法在木材物料表面异常检测方面精度欠佳、模型计算复杂度高等问题,提出一种以YOLOv8n为基础模型的轻量级小目标检测算法(YOLO-ESN)。该算...
在工地堆放木材物料时,室外环境容易导致木材表面出现受潮变形、干裂等异常状况。针对现有检测算法在木材物料表面异常检测方面精度欠佳、模型计算复杂度高等问题,提出一种以YOLOv8n为基础模型的轻量级小目标检测算法(YOLO-ESN)。该算法引入空间-通道重构卷积(SCConv)模块以及针对小目标检测的归一化Wasserstein距离(NWD)损失函数,同时将基于跨空间学习的高效多尺度注意力模块(EMA)嵌入主干网络,以此减轻遮挡及背景干扰带来的影响。改进后的算法在木材缺陷数据集上进行了实验验证,相较于原算法,其mAP@0.5提升了3.6%,参数量降低了23.3%,实现了对堆放木材物料异常情况的实时准确检测。
展开更多
关键词
改进YOLOv8n算法
工地木材异常检测
轻量化
小目标
检测
在线阅读
下载PDF
职称材料
题名
基于改进YOLOv8n的轻量化工地堆放木材异常检测算法
1
作者
王浩宇
机构
太原师范学院计算机科学与技术学院
出处
《现代信息科技》
2025年第7期58-63,70,共7页
文摘
在工地堆放木材物料时,室外环境容易导致木材表面出现受潮变形、干裂等异常状况。针对现有检测算法在木材物料表面异常检测方面精度欠佳、模型计算复杂度高等问题,提出一种以YOLOv8n为基础模型的轻量级小目标检测算法(YOLO-ESN)。该算法引入空间-通道重构卷积(SCConv)模块以及针对小目标检测的归一化Wasserstein距离(NWD)损失函数,同时将基于跨空间学习的高效多尺度注意力模块(EMA)嵌入主干网络,以此减轻遮挡及背景干扰带来的影响。改进后的算法在木材缺陷数据集上进行了实验验证,相较于原算法,其mAP@0.5提升了3.6%,参数量降低了23.3%,实现了对堆放木材物料异常情况的实时准确检测。
关键词
改进YOLOv8n算法
工地木材异常检测
轻量化
小目标
检测
Keywords
improved YOLOv8n algorithm
construction site timber anomaly detection
lightweight
small target detection
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进YOLOv8n的轻量化工地堆放木材异常检测算法
王浩宇
《现代信息科技》
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部