期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度神经网络与权值共享的工业园区负荷预测 被引量:11
1
作者 王刚 杨晓静 +3 位作者 张志军 刘丽新 于美丽 Abinet Tesfaye Eseye 《电测与仪表》 北大核心 2021年第1期137-141,共5页
电力体制市场化的有序推进对工业园区负荷预测提出了新的要求。文章提出了基于深度学习与权值共享机理的负荷预测方法。在预测模型中,将深度神经网络设置为训练中的有监督学习方法,权值共享模式分析了多个目标之间的相关性,并使用各个... 电力体制市场化的有序推进对工业园区负荷预测提出了新的要求。文章提出了基于深度学习与权值共享机理的负荷预测方法。在预测模型中,将深度神经网络设置为训练中的有监督学习方法,权值共享模式分析了多个目标之间的相关性,并使用各个目标的负荷变化率对相关度最高的任务聚合。算例中使用天津某高新区数据对算法有效性进行了验证,结果显示该算法有效提高了工业园区负荷预测的精度,有着较高的应用价值。 展开更多
关键词 工业园区负荷预测 深度学习 权值共享 任务聚合
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部