期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于CNN-NLSTM的脑电信号注意力状态分类方法
1
作者 沈振乾 李文强 +2 位作者 任甜甜 王瑶 赵慧娟 《中文信息学报》 CSCD 北大核心 2024年第4期38-49,共12页
通过脑电信号进行注意力状态检测,对扩大脑-机接口技术的应用范围具有重要意义。为了提高注意力状态的分类准确率,该文提出一种基于CNN-NLSTM的脑电信号分类模型。首先采用Welch方法获得脑电信号的功率谱密度特征并将其表示为二维灰度... 通过脑电信号进行注意力状态检测,对扩大脑-机接口技术的应用范围具有重要意义。为了提高注意力状态的分类准确率,该文提出一种基于CNN-NLSTM的脑电信号分类模型。首先采用Welch方法获得脑电信号的功率谱密度特征并将其表示为二维灰度图像。然后使用卷积神经网络从灰度图像中学习表征注意力状态的特征,并将相关特征输入到嵌套长短时记忆神经网络依次获得所有时间步骤的注意力特征。最后将两个网络依次连接来构建深度学习框架进行注意力状态分类。实验结果表明,该文所提出的模型通过进行多次5-折交叉验证评估后得到89.26%的平均分类准确率和90.40%的最大分类准确率,与其他模型相比具有更好的分类效果和稳定性。 展开更多
关键词 注意力状态 脑电信号 卷积神经网络 嵌套长短记忆神经网络 功率谱密度
在线阅读 下载PDF
基于设备特征多层优选和CNN⁃NLSTM模型的非侵入式负荷分解 被引量:5
2
作者 王家驹 王竣平 +4 位作者 白泰 张然 丁熠辉 杨林 张姝 《电力科学与技术学报》 CAS CSCD 北大核心 2023年第1期146-153,共8页
非侵入式负荷分解技术可以有效挖掘用户侧设备信息,是电网开展用户负荷互动响应的基础。针对目前非侵入式负荷分解模型适应性较差及准确率较低等问题,提出一种基于设备特征多层优选的非侵入式负荷分解模型。首先,针对设备运行特性设计... 非侵入式负荷分解技术可以有效挖掘用户侧设备信息,是电网开展用户负荷互动响应的基础。针对目前非侵入式负荷分解模型适应性较差及准确率较低等问题,提出一种基于设备特征多层优选的非侵入式负荷分解模型。首先,针对设备运行特性设计自适应滑动数据窗,进而获取到更加完整的设备功率片段,同时调整网络输入输出维度;其次,通过融合浅层卷积神经网络(CNN)与两层嵌套长短时记忆网络(NLSTM)提取并加深设备特征;然后,将其输入到改进的注意力机制中,通过调配特征权重,获得最优的设备特征序列;最后,在REDD数据集上进行实验分析,通过对设备特征多层选择、加深与复用在减小训练时间的同时,显著地提升负荷分解的准确率。 展开更多
关键词 非侵入式负荷分解 自适应滑动窗 卷积神经网络 嵌套长短时记忆网络 改进注意力机制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部