随着人工智能对算力需求的激增,数据中心(internet data center,IDC)作为数据处理与存储的机构,其能耗需求远超预期,使用新能源是其可持续发展的需要。然而,可再生能源具有出力不确定性,仅依靠数据中心参与需求响应难以实现消纳,可配置...随着人工智能对算力需求的激增,数据中心(internet data center,IDC)作为数据处理与存储的机构,其能耗需求远超预期,使用新能源是其可持续发展的需要。然而,可再生能源具有出力不确定性,仅依靠数据中心参与需求响应难以实现消纳,可配置储能提高系统灵活性。因此,本工作建立了以规划总成本最优为目标的数据中心与电池储能(battery energy storage,BES)协同规划两阶段鲁棒模型,为防止规划结果过于乐观,引入了储能寿命约束。同时针对在求解所建模型过程中,传统C&CG(column-and-constraint generation)算法存在难以平衡求解速度与精度间关系的问题,本工作提出了一种不精确列和生成约束算法i-C&CG(inexact column-and-constraint generation)进行求解。基于IEEE30节点与IEEE118节点算例系统进行优化解算,仿真结果表明,与仅配置单一储能相比,本工作所提模型储能年等效建设成本下降39785元,数据中心年等效建设成本下降289080元;且本工作所提算法与传统C&CG相比,采用0.18低精度下的i-C&CG,与采用0.16较高精度的C&CG相比较,i-C&CG最多可缩短3632 s的单次迭代求解所需时间,且最终计算结果的相对误差为0.46%,两者收敛间隙与相对最优间隙近似。展开更多
针对新能源电力系统中源荷不确定性导致的系统调度灵活性严重不足问题,文中提出了一种考虑源荷不确定性的电力系统两阶段鲁棒优化模型。根据源荷不确定性特征,结合K-means法和鲁棒优化理论,在多时间尺度对电力系统灵活性需求进行量化。...针对新能源电力系统中源荷不确定性导致的系统调度灵活性严重不足问题,文中提出了一种考虑源荷不确定性的电力系统两阶段鲁棒优化模型。根据源荷不确定性特征,结合K-means法和鲁棒优化理论,在多时间尺度对电力系统灵活性需求进行量化。首先,建立日前鲁棒调度模型,充分挖掘火电机组、抽水蓄能等资源的灵活调节潜力,将火电灵活改造及抽水蓄能抽发状态作为模型的第一阶段决策变量,各灵活资源的出力作为第二阶段决策变量,并以灵活改造成本、碳排放成本及运行成本最小为优化目标。其次,在模型求解中,将所建立的两阶段鲁棒模型转化为相对独立的主问题和子问题,并采用列与约束生成(column and constraint generation,C&CG)算法和强对偶理论反复迭代,以逼近最优解。最后,通过算例验证,所提出的优化调度策略在满足灵活性需求的基础上,统筹各类资源,实现了系统中经济性、环保性、灵活性的均衡,并增强了对源荷不确定性风险的抵御能力。展开更多
随着能源互联网战略的深入实施,可再生能源与微电网的参与度不断攀升,系统中不确定性因素显著增加,各参与主体间的合作与竞争关系变得愈发错综复杂。从垂直和水平两个层面建立了电网、服务商及多微电网混合博弈双层电能交易体系。在垂...随着能源互联网战略的深入实施,可再生能源与微电网的参与度不断攀升,系统中不确定性因素显著增加,各参与主体间的合作与竞争关系变得愈发错综复杂。从垂直和水平两个层面建立了电网、服务商及多微电网混合博弈双层电能交易体系。在垂直层面提出主从博弈的思想,以服务商为主导者、微电网为从属者。构建不确定性问题分阶段优化的分段鲁棒优化模型,实现不确定性的差异化调度,提高鲁棒优化的灵活性。利用布尔-列和约束生成(Bool-Column and constraint generation,B-C&CG)算法求解模型,并把整个模型分为主问题和子问题:主问题优化电价不确定性问题,子问题优化源荷不确定问题。在水平层面搭建纳什谈判模型,通过交替方向乘子(alternating direction method of multipliers,ADMM)算法求解水平层面微电网之间的电能交互模型。利用分布式求解方法得出交易价格策略,再结合拉格朗日乘子法,交替优化各分部并更新乘子,得出各微电网之间的最佳交易电价。仿真结果表明,所提方案兼顾了系统的鲁棒性、经济性及灵活性,缩减了各微电网的成本并充分保护了各微网的隐私。展开更多
为了准确地描述新能源输出功率的波动性和随机性对多能互补微网系统运行的影响,提出了基于数据驱动的多能微网鲁棒优化方法。首先,在传统区间集合的基础上对新能源出力的不确定参数进行多面体集合建模,然后利用具有时空相关性的新能源...为了准确地描述新能源输出功率的波动性和随机性对多能互补微网系统运行的影响,提出了基于数据驱动的多能微网鲁棒优化方法。首先,在传统区间集合的基础上对新能源出力的不确定参数进行多面体集合建模,然后利用具有时空相关性的新能源出力历史数据建立椭球不确定集合,通过连接高维椭球顶点,建立了数据驱动的凸包多面体集合,接着通过放缩凸包集合更好地对不确定参数进行包络。进一步建立了基于数据驱动的多能互补微网鲁棒优化模型,并采用列与约束生成算法(Column and constraint generation,C&CG)对该模型进行求解。最后通过算例进行仿真对比,结果表明,基于数据驱动的多能互补微网鲁棒优化方法可以减少保守性,提高优化结果鲁棒性,证明了所提方法的有效性。展开更多
文摘随着人工智能对算力需求的激增,数据中心(internet data center,IDC)作为数据处理与存储的机构,其能耗需求远超预期,使用新能源是其可持续发展的需要。然而,可再生能源具有出力不确定性,仅依靠数据中心参与需求响应难以实现消纳,可配置储能提高系统灵活性。因此,本工作建立了以规划总成本最优为目标的数据中心与电池储能(battery energy storage,BES)协同规划两阶段鲁棒模型,为防止规划结果过于乐观,引入了储能寿命约束。同时针对在求解所建模型过程中,传统C&CG(column-and-constraint generation)算法存在难以平衡求解速度与精度间关系的问题,本工作提出了一种不精确列和生成约束算法i-C&CG(inexact column-and-constraint generation)进行求解。基于IEEE30节点与IEEE118节点算例系统进行优化解算,仿真结果表明,与仅配置单一储能相比,本工作所提模型储能年等效建设成本下降39785元,数据中心年等效建设成本下降289080元;且本工作所提算法与传统C&CG相比,采用0.18低精度下的i-C&CG,与采用0.16较高精度的C&CG相比较,i-C&CG最多可缩短3632 s的单次迭代求解所需时间,且最终计算结果的相对误差为0.46%,两者收敛间隙与相对最优间隙近似。
文摘针对新能源电力系统中源荷不确定性导致的系统调度灵活性严重不足问题,文中提出了一种考虑源荷不确定性的电力系统两阶段鲁棒优化模型。根据源荷不确定性特征,结合K-means法和鲁棒优化理论,在多时间尺度对电力系统灵活性需求进行量化。首先,建立日前鲁棒调度模型,充分挖掘火电机组、抽水蓄能等资源的灵活调节潜力,将火电灵活改造及抽水蓄能抽发状态作为模型的第一阶段决策变量,各灵活资源的出力作为第二阶段决策变量,并以灵活改造成本、碳排放成本及运行成本最小为优化目标。其次,在模型求解中,将所建立的两阶段鲁棒模型转化为相对独立的主问题和子问题,并采用列与约束生成(column and constraint generation,C&CG)算法和强对偶理论反复迭代,以逼近最优解。最后,通过算例验证,所提出的优化调度策略在满足灵活性需求的基础上,统筹各类资源,实现了系统中经济性、环保性、灵活性的均衡,并增强了对源荷不确定性风险的抵御能力。
文摘随着能源互联网战略的深入实施,可再生能源与微电网的参与度不断攀升,系统中不确定性因素显著增加,各参与主体间的合作与竞争关系变得愈发错综复杂。从垂直和水平两个层面建立了电网、服务商及多微电网混合博弈双层电能交易体系。在垂直层面提出主从博弈的思想,以服务商为主导者、微电网为从属者。构建不确定性问题分阶段优化的分段鲁棒优化模型,实现不确定性的差异化调度,提高鲁棒优化的灵活性。利用布尔-列和约束生成(Bool-Column and constraint generation,B-C&CG)算法求解模型,并把整个模型分为主问题和子问题:主问题优化电价不确定性问题,子问题优化源荷不确定问题。在水平层面搭建纳什谈判模型,通过交替方向乘子(alternating direction method of multipliers,ADMM)算法求解水平层面微电网之间的电能交互模型。利用分布式求解方法得出交易价格策略,再结合拉格朗日乘子法,交替优化各分部并更新乘子,得出各微电网之间的最佳交易电价。仿真结果表明,所提方案兼顾了系统的鲁棒性、经济性及灵活性,缩减了各微电网的成本并充分保护了各微网的隐私。
文摘为了准确地描述新能源输出功率的波动性和随机性对多能互补微网系统运行的影响,提出了基于数据驱动的多能微网鲁棒优化方法。首先,在传统区间集合的基础上对新能源出力的不确定参数进行多面体集合建模,然后利用具有时空相关性的新能源出力历史数据建立椭球不确定集合,通过连接高维椭球顶点,建立了数据驱动的凸包多面体集合,接着通过放缩凸包集合更好地对不确定参数进行包络。进一步建立了基于数据驱动的多能互补微网鲁棒优化模型,并采用列与约束生成算法(Column and constraint generation,C&CG)对该模型进行求解。最后通过算例进行仿真对比,结果表明,基于数据驱动的多能互补微网鲁棒优化方法可以减少保守性,提高优化结果鲁棒性,证明了所提方法的有效性。
文摘新能源发电具有随机性和波动性,“沙戈荒”大型风光基地的新能源并网导致电网潮流复杂多变,线路阻塞几率增大,这对电网规划带来新挑战。动态热定值(dynamic thermalrating,DTR)技术能根据天气条件和设备状态评估线路的载流能力,可有效挖掘电网侧的灵活调节潜力。此外,储能的双向快速调节可缓解电网传输压力,具有一定的输电替代作用。因此,该文集成DTR技术,提出储能与输电网协同的鲁棒规划模型。为充分考虑输电线路DTR技术和储能的协同效果,规划模型中嵌入了基于典型日的运行模拟。通过基于多区域气象数据的DTR评估方法量化典型日内线路的动态传输能力,并在典型日运行模拟中采用鲁棒优化方法考虑新能源出力的不确定性,以更好地发挥储能的灵活调节作用。针对建立的鲁棒规划模型,提出一种适用于混合整数线性规划的改进列约束生成(column and constraint generation,C&CG)算法对模型进行求解,并引入一种新的不精确C&CG迭代过程进行加速。通过西北电网实际系统分析表明,考虑DTR的输–储协同规划将规划线路数量从29条减少到10条,并提升了线路利用效率。此外,系统运行成本降低了9.6%,新能源消纳率从87.7%提升到95.1%。