随着人工智能对算力需求的激增,数据中心(internet data center,IDC)作为数据处理与存储的机构,其能耗需求远超预期,使用新能源是其可持续发展的需要。然而,可再生能源具有出力不确定性,仅依靠数据中心参与需求响应难以实现消纳,可配置...随着人工智能对算力需求的激增,数据中心(internet data center,IDC)作为数据处理与存储的机构,其能耗需求远超预期,使用新能源是其可持续发展的需要。然而,可再生能源具有出力不确定性,仅依靠数据中心参与需求响应难以实现消纳,可配置储能提高系统灵活性。因此,本工作建立了以规划总成本最优为目标的数据中心与电池储能(battery energy storage,BES)协同规划两阶段鲁棒模型,为防止规划结果过于乐观,引入了储能寿命约束。同时针对在求解所建模型过程中,传统C&CG(column-and-constraint generation)算法存在难以平衡求解速度与精度间关系的问题,本工作提出了一种不精确列和生成约束算法i-C&CG(inexact column-and-constraint generation)进行求解。基于IEEE30节点与IEEE118节点算例系统进行优化解算,仿真结果表明,与仅配置单一储能相比,本工作所提模型储能年等效建设成本下降39785元,数据中心年等效建设成本下降289080元;且本工作所提算法与传统C&CG相比,采用0.18低精度下的i-C&CG,与采用0.16较高精度的C&CG相比较,i-C&CG最多可缩短3632 s的单次迭代求解所需时间,且最终计算结果的相对误差为0.46%,两者收敛间隙与相对最优间隙近似。展开更多
针对新能源电力系统中源荷不确定性导致的系统调度灵活性严重不足问题,文中提出了一种考虑源荷不确定性的电力系统两阶段鲁棒优化模型。根据源荷不确定性特征,结合K-means法和鲁棒优化理论,在多时间尺度对电力系统灵活性需求进行量化。...针对新能源电力系统中源荷不确定性导致的系统调度灵活性严重不足问题,文中提出了一种考虑源荷不确定性的电力系统两阶段鲁棒优化模型。根据源荷不确定性特征,结合K-means法和鲁棒优化理论,在多时间尺度对电力系统灵活性需求进行量化。首先,建立日前鲁棒调度模型,充分挖掘火电机组、抽水蓄能等资源的灵活调节潜力,将火电灵活改造及抽水蓄能抽发状态作为模型的第一阶段决策变量,各灵活资源的出力作为第二阶段决策变量,并以灵活改造成本、碳排放成本及运行成本最小为优化目标。其次,在模型求解中,将所建立的两阶段鲁棒模型转化为相对独立的主问题和子问题,并采用列与约束生成(column and constraint generation,C&CG)算法和强对偶理论反复迭代,以逼近最优解。最后,通过算例验证,所提出的优化调度策略在满足灵活性需求的基础上,统筹各类资源,实现了系统中经济性、环保性、灵活性的均衡,并增强了对源荷不确定性风险的抵御能力。展开更多
随着能源互联网战略的深入实施,可再生能源与微电网的参与度不断攀升,系统中不确定性因素显著增加,各参与主体间的合作与竞争关系变得愈发错综复杂。从垂直和水平两个层面建立了电网、服务商及多微电网混合博弈双层电能交易体系。在垂...随着能源互联网战略的深入实施,可再生能源与微电网的参与度不断攀升,系统中不确定性因素显著增加,各参与主体间的合作与竞争关系变得愈发错综复杂。从垂直和水平两个层面建立了电网、服务商及多微电网混合博弈双层电能交易体系。在垂直层面提出主从博弈的思想,以服务商为主导者、微电网为从属者。构建不确定性问题分阶段优化的分段鲁棒优化模型,实现不确定性的差异化调度,提高鲁棒优化的灵活性。利用布尔-列和约束生成(Bool-Column and constraint generation,B-C&CG)算法求解模型,并把整个模型分为主问题和子问题:主问题优化电价不确定性问题,子问题优化源荷不确定问题。在水平层面搭建纳什谈判模型,通过交替方向乘子(alternating direction method of multipliers,ADMM)算法求解水平层面微电网之间的电能交互模型。利用分布式求解方法得出交易价格策略,再结合拉格朗日乘子法,交替优化各分部并更新乘子,得出各微电网之间的最佳交易电价。仿真结果表明,所提方案兼顾了系统的鲁棒性、经济性及灵活性,缩减了各微电网的成本并充分保护了各微网的隐私。展开更多
为探究高比例可再生能源系统下风光资源的消纳与多元化利用途径,提出一种电氨转换及风光时空相关性的多能耦合系统两阶段鲁棒优化模型。首先分析了电制氨的运行机制,并结合直接氨燃料电池技术,探讨了电制氨与氨燃料电池协同运行的系统...为探究高比例可再生能源系统下风光资源的消纳与多元化利用途径,提出一种电氨转换及风光时空相关性的多能耦合系统两阶段鲁棒优化模型。首先分析了电制氨的运行机制,并结合直接氨燃料电池技术,探讨了电制氨与氨燃料电池协同运行的系统特性。为综合考虑风光出力的相关性与不确定性并选择最相近极限场景,该文采用最小体积封闭椭球算法构建高维椭球集,并通过1-范数和¥-范数建立风光出力场景的概率分布置信集,有效整合风光出力不确定性的分布信息。针对鲁棒优化模型中二元变量导致计算时间较长问题,该文提出了一种改进列与约束生成(column and constraint generation,C&CG)算法,利用三分块-交替方向乘子法和近似凸化方法分别处理主-子问题,并通过非精确C&CG算法对主-子问题进行迭代求解,在确保计算效率的同时,快速逼近最优解。结果表明,所提模型获取的极限场景能够准确捕捉风光出力的时空相关性及不确定性,电-氨转换系统有效促进了可再生能源的合理消纳,在确保系统安全稳定运行的同时,显著提升了调度经济性及求解效率。展开更多
新能源随机性使得电力系统潮流复杂多变,加之大量新能源需要远距离输送消纳,输电阻塞问题日益严重。动态热定值(dynamic line rating,DTR)技术能够提升既有架空线路的输电能力,充分发挥系统的灵活调节能力。特别是在N-1事故场景下,采用...新能源随机性使得电力系统潮流复杂多变,加之大量新能源需要远距离输送消纳,输电阻塞问题日益严重。动态热定值(dynamic line rating,DTR)技术能够提升既有架空线路的输电能力,充分发挥系统的灵活调节能力。特别是在N-1事故场景下,采用DTR技术提升线路输送能力,能够缓解严重输电阻塞。然而,传统方法在考虑N-1事故时存在维数灾难问题,因此应用DTR技术仍然存在挑战性。为此,提出了一种两阶段分布鲁棒优化(distributionally robust optimization,DRO)方法以提升架空线路的输电能力。首先,构建了架空线路暂态温度计算模型并做适当简化处理,从而保证后续优化模型的凸性。随后,建立了考虑DTR和N-1安全准则的两阶段DRO模型以避免N-1事故下的持续停电,考虑无功与网损的线性化交流潮流模型能够更准确地计算线路潮流。最后,使用IEEE-24节点系统和IEEE-118节点系统验证了所提方法的有效性。展开更多
文摘随着人工智能对算力需求的激增,数据中心(internet data center,IDC)作为数据处理与存储的机构,其能耗需求远超预期,使用新能源是其可持续发展的需要。然而,可再生能源具有出力不确定性,仅依靠数据中心参与需求响应难以实现消纳,可配置储能提高系统灵活性。因此,本工作建立了以规划总成本最优为目标的数据中心与电池储能(battery energy storage,BES)协同规划两阶段鲁棒模型,为防止规划结果过于乐观,引入了储能寿命约束。同时针对在求解所建模型过程中,传统C&CG(column-and-constraint generation)算法存在难以平衡求解速度与精度间关系的问题,本工作提出了一种不精确列和生成约束算法i-C&CG(inexact column-and-constraint generation)进行求解。基于IEEE30节点与IEEE118节点算例系统进行优化解算,仿真结果表明,与仅配置单一储能相比,本工作所提模型储能年等效建设成本下降39785元,数据中心年等效建设成本下降289080元;且本工作所提算法与传统C&CG相比,采用0.18低精度下的i-C&CG,与采用0.16较高精度的C&CG相比较,i-C&CG最多可缩短3632 s的单次迭代求解所需时间,且最终计算结果的相对误差为0.46%,两者收敛间隙与相对最优间隙近似。
文摘针对新能源电力系统中源荷不确定性导致的系统调度灵活性严重不足问题,文中提出了一种考虑源荷不确定性的电力系统两阶段鲁棒优化模型。根据源荷不确定性特征,结合K-means法和鲁棒优化理论,在多时间尺度对电力系统灵活性需求进行量化。首先,建立日前鲁棒调度模型,充分挖掘火电机组、抽水蓄能等资源的灵活调节潜力,将火电灵活改造及抽水蓄能抽发状态作为模型的第一阶段决策变量,各灵活资源的出力作为第二阶段决策变量,并以灵活改造成本、碳排放成本及运行成本最小为优化目标。其次,在模型求解中,将所建立的两阶段鲁棒模型转化为相对独立的主问题和子问题,并采用列与约束生成(column and constraint generation,C&CG)算法和强对偶理论反复迭代,以逼近最优解。最后,通过算例验证,所提出的优化调度策略在满足灵活性需求的基础上,统筹各类资源,实现了系统中经济性、环保性、灵活性的均衡,并增强了对源荷不确定性风险的抵御能力。
文摘随着能源互联网战略的深入实施,可再生能源与微电网的参与度不断攀升,系统中不确定性因素显著增加,各参与主体间的合作与竞争关系变得愈发错综复杂。从垂直和水平两个层面建立了电网、服务商及多微电网混合博弈双层电能交易体系。在垂直层面提出主从博弈的思想,以服务商为主导者、微电网为从属者。构建不确定性问题分阶段优化的分段鲁棒优化模型,实现不确定性的差异化调度,提高鲁棒优化的灵活性。利用布尔-列和约束生成(Bool-Column and constraint generation,B-C&CG)算法求解模型,并把整个模型分为主问题和子问题:主问题优化电价不确定性问题,子问题优化源荷不确定问题。在水平层面搭建纳什谈判模型,通过交替方向乘子(alternating direction method of multipliers,ADMM)算法求解水平层面微电网之间的电能交互模型。利用分布式求解方法得出交易价格策略,再结合拉格朗日乘子法,交替优化各分部并更新乘子,得出各微电网之间的最佳交易电价。仿真结果表明,所提方案兼顾了系统的鲁棒性、经济性及灵活性,缩减了各微电网的成本并充分保护了各微网的隐私。
文摘为探究高比例可再生能源系统下风光资源的消纳与多元化利用途径,提出一种电氨转换及风光时空相关性的多能耦合系统两阶段鲁棒优化模型。首先分析了电制氨的运行机制,并结合直接氨燃料电池技术,探讨了电制氨与氨燃料电池协同运行的系统特性。为综合考虑风光出力的相关性与不确定性并选择最相近极限场景,该文采用最小体积封闭椭球算法构建高维椭球集,并通过1-范数和¥-范数建立风光出力场景的概率分布置信集,有效整合风光出力不确定性的分布信息。针对鲁棒优化模型中二元变量导致计算时间较长问题,该文提出了一种改进列与约束生成(column and constraint generation,C&CG)算法,利用三分块-交替方向乘子法和近似凸化方法分别处理主-子问题,并通过非精确C&CG算法对主-子问题进行迭代求解,在确保计算效率的同时,快速逼近最优解。结果表明,所提模型获取的极限场景能够准确捕捉风光出力的时空相关性及不确定性,电-氨转换系统有效促进了可再生能源的合理消纳,在确保系统安全稳定运行的同时,显著提升了调度经济性及求解效率。
文摘新能源随机性使得电力系统潮流复杂多变,加之大量新能源需要远距离输送消纳,输电阻塞问题日益严重。动态热定值(dynamic line rating,DTR)技术能够提升既有架空线路的输电能力,充分发挥系统的灵活调节能力。特别是在N-1事故场景下,采用DTR技术提升线路输送能力,能够缓解严重输电阻塞。然而,传统方法在考虑N-1事故时存在维数灾难问题,因此应用DTR技术仍然存在挑战性。为此,提出了一种两阶段分布鲁棒优化(distributionally robust optimization,DRO)方法以提升架空线路的输电能力。首先,构建了架空线路暂态温度计算模型并做适当简化处理,从而保证后续优化模型的凸性。随后,建立了考虑DTR和N-1安全准则的两阶段DRO模型以避免N-1事故下的持续停电,考虑无功与网损的线性化交流潮流模型能够更准确地计算线路潮流。最后,使用IEEE-24节点系统和IEEE-118节点系统验证了所提方法的有效性。