期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于ARM+DLP+SRIO的嵌入式智能计算系统研究 被引量:10
1
作者 赵二虎 吴济文 +2 位作者 查晶晶 郭振 徐勇军 《电子学报》 EI CAS CSCD 北大核心 2021年第3期443-453,共11页
以x86+GPU为代表的当前主流AI计算平台,受限于功耗、体积、带宽、环境适应性等因素,无法适用于物端及边缘智能计算场景.提出并研究了一种基于ARM+DLP+SRIO的嵌入式智能计算系统,从AI算力、能效比、IO带宽三个方面分析了所提嵌入式智能... 以x86+GPU为代表的当前主流AI计算平台,受限于功耗、体积、带宽、环境适应性等因素,无法适用于物端及边缘智能计算场景.提出并研究了一种基于ARM+DLP+SRIO的嵌入式智能计算系统,从AI算力、能效比、IO带宽三个方面分析了所提嵌入式智能计算系统的设计思路和技术优势,并实验验证了该系统的功能及性能指标.实验结果表明:基于ARM+DLP+SRIO的嵌入式智能计算系统AI峰值算力达到114.9TOPS,能效比达到1.03TFLOPS/W,IO带宽达到20Gbps.在智能计算系统领域,其能效比优于国内其它已知同类板卡或系统,嵌入式环境适应能力优于传统台式机和服务器,可作为物端及边缘环境下AI计算任务的通用硬件加速平台. 展开更多
关键词 人工智能 深度学习处理器 嵌入式智能计算系统 串行RAPIDIO 能效比
在线阅读 下载PDF
嵌入式异构智能计算系统并行多流水线设计
2
作者 赵二虎 吴济文 +2 位作者 肖思莹 晋振杰 徐勇军 《电子学报》 EI CAS CSCD 北大核心 2023年第11期3354-3364,共11页
嵌入式智能计算系统因其功耗受限和多传感器实时智能处理需要,对硬件平台的智能算力能效比和智能计算业务并行度提出了严峻挑战.传统嵌入式计算系统常采用的DSP+FPGA数字信号处理架构,无法适用于多个神经网络模型加速场景.本文基于ARM+D... 嵌入式智能计算系统因其功耗受限和多传感器实时智能处理需要,对硬件平台的智能算力能效比和智能计算业务并行度提出了严峻挑战.传统嵌入式计算系统常采用的DSP+FPGA数字信号处理架构,无法适用于多个神经网络模型加速场景.本文基于ARM+DLP+SRIO嵌入式异构智能计算架构,利用智能处理器多片多核多内存通道特性,提出了并行多流水线设计方法.该方法充分考虑智能计算业务中数据传输、拷贝、推理、结果反馈等环节时间开销,为不同的神经网络模型合理分配智能算力资源,以达到最大的端到端智能计算业务吞吐率.实验结果表明,采用并行多流水线设计方法的深度学习处理器利用率较单流水线平均提高约25.2%,较无流水线平均提高约30.7%,满足可见光、红外、SAR等多模图像实时智能处理需求,具有实际应用价值. 展开更多
关键词 嵌入式智能计算系统 异构计算架构 神经网络模型 并行多流水线 深度学习处理器
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部