期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于SMOTEENN-CGAN-Stacking的岩爆烈度等级预测研究 被引量:1
1
作者 高梅 张成良 +1 位作者 张华超 吴泽鑫 《工程地质学报》 CSCD 北大核心 2024年第6期2264-2276,共13页
随着地下工程的不断发展和扩大规模,岩爆灾害在施工过程中频繁发生,对工程及施工人员生命造成了严重威胁。因此,岩爆烈度等级预测成为防范岩爆灾害的重要的研究方向。本文选取围岩最大切应力σ_(θ)、单轴抗压强度σ_(c)、单轴抗拉强度... 随着地下工程的不断发展和扩大规模,岩爆灾害在施工过程中频繁发生,对工程及施工人员生命造成了严重威胁。因此,岩爆烈度等级预测成为防范岩爆灾害的重要的研究方向。本文选取围岩最大切应力σ_(θ)、单轴抗压强度σ_(c)、单轴抗拉强度σ_(t)和弹性能量指数W_(et)作为预测模型的4个特征值,提出了一种基于SMOTEENN-CGAN数据处理的Stacking集成算法的组合模型,用于岩爆烈度等级的预测。在该模型中,首先使用SMOTEENN和CGAN算法以过采用、欠采样、对抗生成的方法处理原始数据;随后采用10种经典算法验证SMOTEENN-CGAN的有效性;最后以Stacking集成算法构建出4组含不同基模型和元模型的岩爆烈度等级预测模型。结果表明:(1)SMOTEENN-CGAN能用于处理多分类问题,新生成的岩爆数据符合原始分布特征,预处理后的数据特征值离散程度,异常点明显减少;(2)数据经过预处理后,10种经典算法的性能得到不同程度的提升,各算法的平均准确率提高了1.87%~7.75%不等;其中MLP与NP提高较多,分别为7.75%与7.43%。(3)不同的基模型与元模型的搭配会影响Stacking的性能,在组合(4)中,基模型为XGBoost+LGBM+ETC时,元模型中的Adaboost最高预测准确率为96.12%。通过工程实例验证Stacking岩爆烈度等级预测模型的可靠性时,预测最高准确率可达92.3%。本文模型为岩爆烈度预测提供了一种有效可行的机器学习预测方法。 展开更多
关键词 不平衡数据集 CGAN SMOTEENN STACKING 岩爆烈度等级预测
在线阅读 下载PDF
基于海林格距离和AHDPSO-ELM的岩爆烈度等级预测模型 被引量:4
2
作者 温廷新 陈依琳 《中国安全科学学报》 CAS CSCD 北大核心 2022年第11期38-46,共9页
为提高岩爆烈度等级预测准确率,提出一种基于海林格距离过采样(HDO)和自适应混合差分粒子群优化算法(AHDPSO)-极限学习机(ELM)的预测模型。首先,在分析影响岩爆烈度因素基础上选取主要影响指标,采用HDO算法增加少数类样本数目,均衡各等... 为提高岩爆烈度等级预测准确率,提出一种基于海林格距离过采样(HDO)和自适应混合差分粒子群优化算法(AHDPSO)-极限学习机(ELM)的预测模型。首先,在分析影响岩爆烈度因素基础上选取主要影响指标,采用HDO算法增加少数类样本数目,均衡各等级岩爆样本;然后,基于粒子群优化(PSO)算法,引入自适应种群间距和差分进化(DE)算法中变异算子设计AHDPSO,利用AHDPSO优选ELM的输入层权值和隐藏层阈值,构建岩爆烈度等级预测模型;最后,采用国内外301组岩爆样本对模型训练、测试并与其他模型对比。研究表明:经HDO算法均衡岩爆数据集后,整体的预测准确率提高11.91%,且各等级的平均预测准确率均得到提高;基于HDO的AHDPSO-ELM岩爆烈度等级预测模型平均预测准确率为98.92%,均方误差为0.0108,预测精度优于其他对比模型。 展开更多
关键词 海林格距离过采样(HDO) 自适应混合差分粒子群优化(AHDPSO) 岩爆烈度等级预测 极限学习机(ELM) 岩爆样本 变异算子 自适应种群间距
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部