The sandstones of the paleogene in the Huimin Depression have undergone numerous diagenetic processes, such as compaction, cementation, dissolution, metasomasis and recrystallization. The first three — compaction, ...The sandstones of the paleogene in the Huimin Depression have undergone numerous diagenetic processes, such as compaction, cementation, dissolution, metasomasis and recrystallization. The first three — compaction, cementation and dissolution — affect reservoir properties most intensively. An average porosity loss due to compaction is 0.78% per 100 meters, slightly higher in the central and southern parts and lower in the northern. Cementation has resulted in the porosity loss from 8% to 20% at a depth below 1,500 meters. Dissolution, which in most cases is the dissolution of feldspar and of carbonate cement, primarily occurs in two depth intervals, from 1,400 to 2,500 meters and 2,700 to 4,000 meters respectively. New porosity is created through dissolution from 4% to 14%. The sandstones experienced stage A and stage B of early diagenesis and stage A of late diagenesis. At present, most of them are experiencing Phase A2 of late diagenesis. The types of pores in the sand reservoir can be grouped into primary and secondary ones.展开更多
The Kebao coal basin is located at the middle segment of the Xiaojiang fault zone in the central part of Yunnan Province. The coal-bearing strata of Tertiary age are made up of alluvial fan-lacustrine-swamp genetic se...The Kebao coal basin is located at the middle segment of the Xiaojiang fault zone in the central part of Yunnan Province. The coal-bearing strata of Tertiary age are made up of alluvial fan-lacustrine-swamp genetic sequences. Sinistral strike-slip motion of the N-S trending fault zone has created a locally transtensional or transpres sional tectonic environment, giving rise to the relative movement of fault blocks in the basement, and the development of a strike-slip coal basin at the surface. Based on de tailed sedimentary-structural analyses, the paper proposes geodynamic models for the coal basin formation and its deformation.展开更多
The influence of an upper,mined coal seam on the stability of rock surrounding a roadway in a lower coal seam is examined.The technical problems of roadway control are discussed based on the geological conditions exis...The influence of an upper,mined coal seam on the stability of rock surrounding a roadway in a lower coal seam is examined.The technical problems of roadway control are discussed based on the geological conditions existing in the Liyazhuang Mine No.2 coal seam.The stress distribution and floor failure in the lower works after mining the upper coal is studied through numerical simulations.The failure mechanism of the roof and walls of a roadway located in the lower coal seam is described.The predicted deformation and failure of the roadway for different distances between the two coal seams are used to design two ways of supporting the lower structure.One is a combined support consisting of anchors with a joist steel tent and a combined anchor truss.A field test of the design was performed to good effect.The results have significance for the design of supports for roadways located in similar conditions.展开更多
This paper presents an overview of experimental investigations conducted at China University of Mining and Technology Beijing(CUMTB) on roadway excavation using large-scale geomechanical model tests.The simulated sedi...This paper presents an overview of experimental investigations conducted at China University of Mining and Technology Beijing(CUMTB) on roadway excavation using large-scale geomechanical model tests.The simulated sedimentary rocks are composed by alternating layers of sandstone, mudstone and coal seam inclined at varied angles with respect to the horizontal including 0°, 45°, 60°, and 90°. During the excavation, infrared thermography was employed to detect the thermal response of the surrounding rocks under excavation. The obtained raw thermograms were processed using denoising algorithm, data reduction procedure and Fourier analysis. The infrared temperature(IRT) characterizes the overall rock response; the processed thermal images represent the structural behavior, and the Fourier spectrum describes damage development in the frequency domain. Deeper understanding was achieved by the comparative analyses of excavation in differently inclined rock masses using the image features of IRTs, thermal images and Fourier spectra.展开更多
文摘The sandstones of the paleogene in the Huimin Depression have undergone numerous diagenetic processes, such as compaction, cementation, dissolution, metasomasis and recrystallization. The first three — compaction, cementation and dissolution — affect reservoir properties most intensively. An average porosity loss due to compaction is 0.78% per 100 meters, slightly higher in the central and southern parts and lower in the northern. Cementation has resulted in the porosity loss from 8% to 20% at a depth below 1,500 meters. Dissolution, which in most cases is the dissolution of feldspar and of carbonate cement, primarily occurs in two depth intervals, from 1,400 to 2,500 meters and 2,700 to 4,000 meters respectively. New porosity is created through dissolution from 4% to 14%. The sandstones experienced stage A and stage B of early diagenesis and stage A of late diagenesis. At present, most of them are experiencing Phase A2 of late diagenesis. The types of pores in the sand reservoir can be grouped into primary and secondary ones.
文摘The Kebao coal basin is located at the middle segment of the Xiaojiang fault zone in the central part of Yunnan Province. The coal-bearing strata of Tertiary age are made up of alluvial fan-lacustrine-swamp genetic sequences. Sinistral strike-slip motion of the N-S trending fault zone has created a locally transtensional or transpres sional tectonic environment, giving rise to the relative movement of fault blocks in the basement, and the development of a strike-slip coal basin at the surface. Based on de tailed sedimentary-structural analyses, the paper proposes geodynamic models for the coal basin formation and its deformation.
基金supported by the National Natural Science Foundation of China (No.50874103)the National Basic Research Program of China (No.2010CB226805)+1 种基金the Natural Science Foundation of Jiangsu Province (No.BK2008135)by the Open Foundation of State Key Laboratory of Geomechanics and Deep Underground Engineering (No.SKLGDUEK0905)
文摘The influence of an upper,mined coal seam on the stability of rock surrounding a roadway in a lower coal seam is examined.The technical problems of roadway control are discussed based on the geological conditions existing in the Liyazhuang Mine No.2 coal seam.The stress distribution and floor failure in the lower works after mining the upper coal is studied through numerical simulations.The failure mechanism of the roof and walls of a roadway located in the lower coal seam is described.The predicted deformation and failure of the roadway for different distances between the two coal seams are used to design two ways of supporting the lower structure.One is a combined support consisting of anchors with a joist steel tent and a combined anchor truss.A field test of the design was performed to good effect.The results have significance for the design of supports for roadways located in similar conditions.
基金provided by the Special Funds for the Major State Basic Research Project(No.2006CB202200)the Innovative Team Development Project of the state Educational Ministry of China(No.IRT0656)
文摘This paper presents an overview of experimental investigations conducted at China University of Mining and Technology Beijing(CUMTB) on roadway excavation using large-scale geomechanical model tests.The simulated sedimentary rocks are composed by alternating layers of sandstone, mudstone and coal seam inclined at varied angles with respect to the horizontal including 0°, 45°, 60°, and 90°. During the excavation, infrared thermography was employed to detect the thermal response of the surrounding rocks under excavation. The obtained raw thermograms were processed using denoising algorithm, data reduction procedure and Fourier analysis. The infrared temperature(IRT) characterizes the overall rock response; the processed thermal images represent the structural behavior, and the Fourier spectrum describes damage development in the frequency domain. Deeper understanding was achieved by the comparative analyses of excavation in differently inclined rock masses using the image features of IRTs, thermal images and Fourier spectra.