期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
一种高效的基于排序的RBF神经网络属性选择方法
被引量:
8
1
作者
文专
王正欧
《计算机应用》
CSCD
北大核心
2003年第8期34-36,40,共4页
高维数据包含的大量冗余给数据挖掘带来了困难。因此,对高维数据进行数据挖掘时,必须先对原始数据进行降维处理。文中提出一种基于数据属性重要性排序的神经网络属性选择方法。该方法只需对部分属性进行训练,即可进行降维。它克服了现...
高维数据包含的大量冗余给数据挖掘带来了困难。因此,对高维数据进行数据挖掘时,必须先对原始数据进行降维处理。文中提出一种基于数据属性重要性排序的神经网络属性选择方法。该方法只需对部分属性进行训练,即可进行降维。它克服了现有的神经网络降维方法必须对全部属性进行训练的弊端,大大提高了属性选择的效率。该方法先用输入输出关联法对数据属性进行重要性排序,然后按重要次序用RBF神经网络进行属性选择。仿真结果表明效果良好。
展开更多
关键词
数据降维
属性重要性排序
输入输出关联法
RBF神经网络
属性
选择
在线阅读
下载PDF
职称材料
题名
一种高效的基于排序的RBF神经网络属性选择方法
被引量:
8
1
作者
文专
王正欧
机构
天津大学系统工程研究所
出处
《计算机应用》
CSCD
北大核心
2003年第8期34-36,40,共4页
基金
国家自然科学基金项目 (6 0 2 750 2 0 )
文摘
高维数据包含的大量冗余给数据挖掘带来了困难。因此,对高维数据进行数据挖掘时,必须先对原始数据进行降维处理。文中提出一种基于数据属性重要性排序的神经网络属性选择方法。该方法只需对部分属性进行训练,即可进行降维。它克服了现有的神经网络降维方法必须对全部属性进行训练的弊端,大大提高了属性选择的效率。该方法先用输入输出关联法对数据属性进行重要性排序,然后按重要次序用RBF神经网络进行属性选择。仿真结果表明效果良好。
关键词
数据降维
属性重要性排序
输入输出关联法
RBF神经网络
属性
选择
Keywords
data dimensionality reduction
attribute importance ranking
input output correlation
RBF neural networks
attributes selection
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
一种高效的基于排序的RBF神经网络属性选择方法
文专
王正欧
《计算机应用》
CSCD
北大核心
2003
8
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部